【论文阅读】Batch DropBlock Network for Person Re-identification and Beyond

本文探讨了BFE层在行人重识别领域的创新应用,通过结合全局和局部特征,实现对特征擦除分支的有效监督。局部特征通过特征擦除及GMP获取关键向量,批处理DropBlock层则在特征图上执行随机区域丢弃,最终串联为embedding vector。BFE层无参数,便于在多种度量学习任务中使用,且其超参数可调,适应不同任务需求。
摘要由CSDN通过智能技术生成

论文地址
论文代码

论文翻译以及介绍

别的博客

关注人体的局部信息
框架:全局和局部的特征结合在一起

全局特征:提供了全局特征表示,对特征擦除分支进行监督
局部特征:特征擦除,GMP获得2048维向量-1024维 (drop 的区域也可以渐进式的丢弃)
批处理DropBlock层将随机丢弃张量T的相同区域 ######
feature dropping branch 用 BatchDropBlock Layer 在 feature map T 执行,得到 batch erased feature map T’
然后串联在一起作为embeding vactor

  1. BFE层无参数,不会增加网络大小。
  2. BFE层可以很容易地用于除行人重识别之外的其他度量学习任务。
  3. BFE超参数在不改变网络结构的情况下可调,适用于不同的任务。

方法:擦除一部分区域,使网络仍然具有判别性,也就是对不太显著地区域能够增加判别性;
擦除区域的高度和宽度因任务而异
在最后一层的特征上分两个分支:global分支和局部分支,约束采用常见的两个损失

启发:part和mask提升局部表示的方法;
具体的分块原理,对于块的约束,如何分类的(再看看论文中的描述)
为什么在这个层做batch-dropout,或者维度放大一倍会有什么影响。

在这里插入图片描述

论文的模型图
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>