关注人体的局部信息
框架:全局和局部的特征结合在一起
全局特征:提供了全局特征表示,对特征擦除分支进行监督
局部特征:特征擦除,GMP获得2048维向量-1024维 (drop 的区域也可以渐进式的丢弃)
批处理DropBlock层将随机丢弃张量T的相同区域 ######
feature dropping branch 用 BatchDropBlock Layer 在 feature map T 执行,得到 batch erased feature map T’
然后串联在一起作为embeding vactor
- BFE层无参数,不会增加网络大小。
- BFE层可以很容易地用于除行人重识别之外的其他度量学习任务。
- BFE超参数在不改变网络结构的情况下可调,适用于不同的任务。
方法:擦除一部分区域,使网络仍然具有判别性,也就是对不太显著地区域能够增加判别性;
擦除区域的高度和宽度因任务而异
在最后一层的特征上分两个分支:global分支和局部分支,约束采用常见的两个损失
启发:part和mask提升局部表示的方法;
具体的分块原理,对于块的约束,如何分类的(再看看论文中的描述)
为什么在这个层做batch-dropout,或者维度放大一倍会有什么影响。