时序分析 19 VAR(Vector Autoregression) 向量自回归

时序分析 19 向量自回归 (VAR)

VAR (Vector Autoregressive)

简介

    本文开始介绍VAR(Vector Autoregressive)向量自回归。
    前面我们讨论了多个自回归模型,例如AR, ARMA, ARIMA等。而向量自回归和已讨论地自回归模型有本质的区别:类似AR等模型所建模的关系都是单向的,而VAR是双向的。
    所谓单向就是模型的关系是一个方向,就是历史的情况影响现在的情况而现在是不能影响历史的;而VAR建模需要2个或者更多的时序变量,这些时序变量的影响是双向的。一个变量影响另一个的同时,这个变量也受到另一个的影响。
    VAR的自回归就是指一个时序变量的值是该变量本身过去的值和其他变量过去的值的线性函数。

理论

    先看一下公式让我们有一个直观理解,例如我们有两个时序变量 Y 1 Y_1 Y1 Y 2 Y_2 Y2,模型 V A R ( 2 ) VAR(2) VAR(2) 可以表示为
Y 1 , t = α 1 + β 11 , 1 Y 1 , t − 1 + β 12 , 1 Y 2 , t − 1 + β 11 , 2 Y 1 , t − 2 + β 12 , 2 Y 2 , t − 2 + ϵ 1 , t Y_{1,t}=\alpha_1+\beta_{11,1}Y_{1,t-1}+\beta_{12,1}Y_{2,t-1}+\beta_{11,2}Y_{1,t-2}+\beta_{12,2}Y_{2,t-2}+\epsilon_{1,t} Y1,t=α1+β11,1Y1,t1+β12,1Y2,t1+β11,2Y1,t2+β12,2Y2,t2+ϵ1,t
Y 2 , t = α 2 + β 21 , 1 Y 1 , t − 1 + β 22 , 1 Y 2 , t − 1 + β 21 , 2 Y 1 , t − 2 + β 22 , 2 Y 2 , t − 2 + ϵ 2 , t Y_{2,t}=\alpha_2+\beta_{21,1}Y_{1,t-1}+\beta_{22,1}Y_{2,t-1}+\beta_{21,2}Y_{1,t-2}+\beta_{22,2}Y_{2,t-2}+\epsilon_{2,t} Y2,t=α2+β21<

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值