贝叶斯时序预测(一)
时序预测在统计分析和机器学习领域一直都是一个比较重要的话题。在本系列前面的文章中我们介绍了诸如ARIMA系列方法,Holt-Winter指数平滑模型等多种常用方法,实际上这些看似不同的模型和方法之间都具有千丝万缕的联系,包括我们一直没有涉及的最复杂的模型LSTM(Long Short Term Memory)。在实际的时序数据分析工作中,你会发现在通常境况下简单模型都比复杂模型更为有效。本文开始讨论另一套时序预测体系:Bayes 时序预测方法。这套方法的背后原理可以很简单,但也可以很深,我们不如从一个例子开始,先积累一些直觉和经验,后续系列会展开理论部分的讨论。
贝叶斯时序预测通常不会预测时序点,而是给出时序点的分布,但如果希望预测时序点,你可以简单取该分布的均值或者中位数。
贝叶斯定理回顾
上图展示了贝叶斯定理的基本结构,这个定理可以认为是机器学习领域最重要的定理了,个人认为没有之一。
让我们来简单回顾一下这个定理的核心内容,
-
P ( A ) P(A) P(A) ,是事件 A A A的先验概率,可以理解为在没有任何具体的数据支持下,我们对事件 A A A发生的概率的直觉,也可称为prior belief(先验信念)。先验信念表示了我们对事件 A A A发生概率的主观理解。
-
P ( B ) P(B) P(B),是事件 B B B的概率,在贝叶斯定理中一般称为边缘概率(marginal)。
-
P ( A ∣ B ) P(A|B)