时序分析(4)
移动平均模型(MA)
上一篇文章我们探讨了采用AR模型对时序数据进行建模,总的看来AR模型对金融序列建模并不是很理想。这一节我们主要讨论时序数据移动平均模型。
首先我们介绍MA模型的基本概念:
Moving Average Models - MA(q)
移动平均模型MA(q)其实和自回归模型有相似之处,不同之处在于移动平均是以过去的残差项也就是白噪声来做线性组合,而AR模型是以过去的观察值来做线性组合。MA的出发点是通过组合残差项来观察残差的振动.
MA(q)模型定义如下:
如果一个单变量时序数据 { y t ; t = 1 , 2 , . . . } \{y_t;t=1,2,...\} {
yt;t=1,2,...},
y t = ω t + β 1 ω t − 1 + . . . + β p ω t − p y_t=\omega_t+\beta_1\omega_{t-1}+...+\beta_p\omega_{t-p} yt=