人工智能带给了我们什么?机遇还是风险?

人工智能带给了我们什么?机遇还是风险?

一. 概述

​ 自从2022年底,OpenAI发布ChatGPT以来,诸如AGI(Artificial General Intelligence,人工通用智能)、GenAI(Generative Artificial Intelligence, 生成式人工智能)等词充斥着传媒,各行各业都在谈论人工智能技术并开始研讨该技术如何辅助提升本行业的业务,而关于人工智能的各种猜想更是层出不穷,例如,“人工智能将引发第四次工业革命”、“机器人可能会产生自我意识”、“人工智能的泡沫巨大”等等,而2024年诺贝尔物理学和化学奖颁获得者有三位人工智能领域的科学家,这件奇事更是把人工智能推到了风口浪尖。

​ 总的看来,人工智能的发展可以用众说纷纭、乱象横生来形容。笔者希望可以帮助读者梳理一下人工智能的整个脉络,从技术、金融、社会等多方面因素来综合探讨和分析一下人工智能究竟会带给我们什么,其中的机遇和风险又是什么?

结论先行:

能力边界

  • 目前的主流人工智能技术采用的是基于大量数据的统计归纳法,而非演绎推断法。
  • 机器学习模型是不可能超过其训练数据所包含的信息的边界的。
  • 以现有的人工智能发展的技术和底层原理上看,人工智能在绝大多数场景下仍然处于工具层,不可能超越人类的智能水平。
  • 大语言模型对人类获取信息和生成内容起到了一定的助力作用。

发展与影响

  • 人工智能技术的发展是一把双刃剑。
  • 人工智能技术带来的影响不可忽视,但也没有必要过分夸大。
  • 人工智能的应用并不产生在类似ChatGPT的大语言模型之后,而是早就发生了。
  • 同时拥有基础模型构建能力、公有云计算服务能力和核心业务垄断者角色的厂商会在长期的竞争中取得优势。

本质与误区

  • 我们需要区分人工智能可能能做到什么和人工智能目前做到了什么。
  • 任何技术的发展都会回归于其商业本质或者其底层逻辑。
  • 自动化并不意味着就是人工智能。
  • “大”并不意味着
  • 在模型训练过程中,数据 > 工程 > 算法

趋势与方向

  • 人工智能模型和应用会在三年内逐渐收敛。
  • 人工智能的技术发展已经进入瓶颈期。
  • 小语言模型的应用会更加普及。
  • 算力成本在长期会大幅下降。

二. 人工智能技术发展简要回顾

[!WARNING]

本文中的内容仅代表笔者个人观点,如有不当或者不全面之处,请各位读者谅解,也欢迎指正!

​ 下面的三张图分别表述了人工智能核心技术发展、重大事件和里程碑,完全是基于作者个人的理解,不当之处请各位不吝赐教。
在这里插入图片描述

​ 从1950s的统计方法确立和优化到2020s的大语言模型和视觉语言模型的应用,人工智能技术的发展经历了超过70年。

在这里插入图片描述
``
​ 时至今日,人工智能已经可以在多项被认为是人类较为擅长的任务中超过或者接近人类水平。
在这里插入图片描述
​ 2022年以后,虽然OpenAI、Google和其他行业追随者相继推出了诸如GPT-4、GPT-Turbo,O1,Sonnet、Gemini等更新模型,但笔者认为这些模型并没有在本质问题上有显著的改善和突破,包括Sora等多模态模型。

​ 人工智能技术的发展离不开众多科技人员巧夺天工的奇思妙想和卓越贡献,但笔者认为算力大幅提高和数据获取成本大幅降低也起到了决定性的作用。今天看来,人工智能已经发展出了多种数学模型、方法和技术架构,但基本上没有离开统计归纳法的范畴。虽然也有一些模型采用了例如贝叶斯因果推断、符号逻辑演绎等方法,但这些方法与人类分析复杂事物所常用的演绎推断法有本质区别。所以人工智能模型所能达到的能力边界是不可能超过其训练数据所包含的信息边界的。

三. 大语言模型综述

3.1 技术方面

​ 虽然笔者属于数据科学工作者,本文的主旨并不是阐述人工智能的技术细节。但在本节的开始部分,笔者还是希望将个人所理解的一些人工智能技术的框架性解释分享给各位读者,供大家参考。

  1. 人工智能模型到底是什么?

    如果从AI模型所针对的任务类型来分类,模型可分为生成式模型判别式模型

    回顾贝叶斯定理: P ( A ∣ B ) = P ( A ) × P ( B ∣ A ) P ( B ) P(A|B)=\frac{P(A)\times P(B|A)}{P(B)} P(AB)=P(B)P(A)×P(BA), 其中 P ( A ) P(A) P(A) 为先验概率, P ( A ∣ B ) P(A|B) P(AB) 为后验概率。

    判别式模型是在对事件 A A A 对观测数据 B B B 的后验概率 P ( A ∣ B ) P(A|B) P(AB)进行建模 。

    生成式模型是在对事件 A A A 基于数据 B B B 的先验概率 P ( A ) P(A) P(A) 建模。

  2. 神经网络又是什么?

    神经网络虽然是对人脑神经元结构的模拟,但鉴于人类对于脑科学的了解,笔者认为说计算机系统模拟这种方式就可以达到人类智能,证据远远不足。

    ​ 深度神经网络从本质上来看就是递归式广义线性模型(传统的全连接神经网络,DNN),而卷积神经网络(CNN)、循环神经网络(RNN/LSTM)等结构都是针对数据特征提取方式或者不同任务类型所做的改造。例如,CNN通过卷积操作对空间数据特征进行建模;RNN/LSTM本质上是属于Encoder/Decoder结构,擅于对序列数据进行建模。

  3. Transformer是什么?

    ​ 大语言模型所依赖的Transformer架构实际上采用的是一种自回归模型,自回归模型的基本原理和要素可参见笔者的另一篇博客。到目前为止,机器学习模型所能解决的问题可以被抽象为两类问题:回归分类,而分类模型本质上还是回归模型。Transformer架构所解决的核心问题是:

    • 并行计算问题

    • 长序列特征提取问题(自注意力机制),可理解为对于隐含状态的动态加权平均,从而找到与当前场景向量最相关的特征是什么。所以我们可以将其理解为解决特征选择问题。

      从数学上看,自注意力机制中比较容易让人困惑的是 Q ( q u e r y ) 、 K ( k e y ) 、 V ( v a l u e ) Q(query)、K(key)、V(value) Q(query)K(key)V(value) 矩阵。我们可将它们类比于一个信息检索系统, Q Q Q 相当于搜索的输入, K K K 相当于搜索字段(例如文章标题、摘要、作者、主题等),而 V V V 相当于检索出来的候选集。

​ Transformer架构确实已经被证实了其有效性,但它的缺点也是显著的。科研工作者们也正在寻找其他解决方案尝试进一步增强 人工智能的能力,例如李飞飞所领衔研究的空间智能模型、Meta首席科学家LeYun所提到的基于能量的模型(EBM, Energy Based Model),另外还有基于状态空间模型的Mamba神经节符号逻辑、**液态神经网络(Liquid neural networks)**等等,但截止到目前 为止,这些新的方向所取得的成绩还远远不能和Transformer架构相比。

  1. 大语言模型所依赖的规模定律是什么?

    规模定律(Scaling Law)是一个经验法则,它是根据改变模型参数空间和训练数据集尺寸通过函数拟合而得到的,并不是证明出来的。它告诉我们模型参数量和训练数据量与模型性能呈现幂律关系,但没有人知道这个法则会不会随着参数和数据的进一步增加而失效,最近已有迹象表明此法则已进入了收益递减阶段。另外,在规模定律的作用下,大语言模型所迸发出来的能力是可以在统计归纳的范畴内进行解释。

  2. 是否LLM出现之后才有人工智能应用?

    ​ 2022年底,OpenAI所推出的ChatGPT的卓越表现确实说明人工智能技术在自然语言处理任务上达到了一个里程碑,但这并不是人工智能技术和应用的起点,当然也不是终点。事实上,基于传统机器学习的人工智能技术在各行各业早就有了广泛应用,请看下图:
    在这里插入图片描述
    推荐系统和CTR是两个目前为止最具商业价值的机器学习模型应用。推荐系统在电商、抖音或今日头条等内容传播平台有广泛应用,为平台实现流量保持和增长、商品推送等方面发挥了巨大商业价值;CTR(Click Through Rate)在搜索引擎,特别是广告点击率预测中也有深度运用。从技术上看,笔者认为包括深度学习,机器学习模型的本质都是回归模型

  3. 大家都再说的“大模型”这个词代表什么?

    ​ “大模型”这个词已经成为了一个流行词汇,但实际上从学术观点上来看,这个词的含义和定义都不明确,应该是一个简化的口口相传的词。学术界接受度比较高的表示这个概念的词是基础模型(Foundation Model)。在基础模型的训练过程中,数据实际上起到了决定性作用,其次是工程能力,最后才是算法。当然,算力也是不可或缺的生产要素。本文没有细分大语言模型、基础模型、视频语言模型和多模态模型,在本文中可认为这些术语是可以互换的。

  4. 大语言模型的主要技术路线是什么?

    ​ 笔者就个人的理解总结一张LLM框架图,供读者参考:
    在这里插入图片描述 ​ 对于这张图的细节,笔者就不多做解释。笔者在图中最下一层总结了LLM在各个阶段所沉淀的能力,其中以灰色字体书写的是本人认为此能力有待商榷或者与人类能力有明显差距。LLM所表现出来的Emergent Abilities是最具争议的,很多数据科学工作者甚至OpenAI的研究人员都对这些能力感到惊奇。但是2023年,来自斯坦福大学的研究者发表了一篇名为 Are Emergent Abilities of Large Language Models a Mirage?的论文,文中的主要观点是认为所谓的能力迸发可能是虚幻的,因为评估能力的指标本身是不连续的。此论文一经发表就引发了学术圈的振动,House Science Committee认为该论文导致Emergent Abilities被严谨的统计分析驳倒了。实际上,提出Emergent Abilities这个词的原始作者在其原文中也曾提到非连续指标可能会将综合性的增长和改善误导为Emergence

  5. LLM存在什么问题吗?

    LLM虽然在自然语言相关任务上表现出了令人瞩目的突破,但从技术上和实际应用上看也存在一些问题,如下图所示:
    在这里插入图片描述
    RAG(Retrieval Augmented Generation,检索增强生成)是2024年比较热的一个话题,诸如StandardRAG、GraphRAG、LightRAG等多种变体解决方案层出不穷,还会涉及向量数据库知识图谱等多个技术。本质上,RAG解决两个核心问题:大语言模型的时效性问题和如何将其与本地知识库融合的问题。笔者认为,RAG对于解决上述两个问题理论上可行,也会降低幻觉发生的概率,但对实施团队的工程能力和算法能力要求很高,而且需要持续迭代和维护,实际上这种解决方案成本不低。

    ​ 本人认为目前国内大语言模型移动端应用(豆包、Kimi、智谱AI等)大概率采用的是类似RAG的方法,是用搜索结果结合模型的摘要总结能力来实现语义问答的,而且应该是做了比较深入的模型调用的成本优化和提示词优化。

    ​ **幻觉(Hallucinate)**问题是一个众所周之的问题,虽然有多种方法都可以降低幻觉出现的概率,但目前研究人员并没有找到彻底解决这个问题的思路和方法。笔者认为以目前大语言模型的训练方法和工作原理上看,幻觉问题几乎不可能完全消除。微软研究人员在2023年11月发表了题为"Calibrated Language Models Must Hallucinate"的一篇论文,文中认为语言模型出现幻觉有其固有的统计学原因,与数据质量和Transformer架构无关,是不可能在预训练过程被完全被消除的,只能依赖于后训练或者调整计算架构和学习算法。

    推理能力也是目前LLM倍受诟病的一个对于LLM发展空间而言至关重要的能力。笔者认为究其原因是LLM的学习方法是基于统计归纳法。虽然ChatGPT o1/o3借助COT(Chain of Thoughts)在推理方面取得了不错的成绩,但依然未能从根本上解决这个问题。不少其他研究机构也发表观点质疑这种推理能力可是只是模式匹配或者并不可靠,例如剑桥大学学者于2024年9月在Nature上发表了题为“Larger and more instructable language models become less reliable”的论文;苹果公司的6位研究者于2024年10月发表了一篇题为"GSM-Symbolic: Understanding the Limitations of Mathematical Reasoning in Large Language Models"的论文,文中认为大语言模型所表现出来的数学推理能力用复杂的模式匹配来解释更为恰当。

    安全问题是LLM在全球研究者和政府机构最为关注的一个问题,目前大家关注的并不是担心人工智能会威胁人类生存,而是这些模型被使用是是否具备足够的安全性、鲁棒性和稳定性。

    可解释性和安全问题实际上是息息相关的。如果不可解释模型的好的表现,那么就意味着在某些场景下模型的表现可能会非常差,从而难以评估模型所带来的风险和安全性问题。关于这个方面的技术资料,有兴趣的读者可阅读一下“Explainability for Large Language Models: A Survey”。

    成本问题可以说是大语言模型助推行业应用,且维持其可持续性的拦路虎。2024年OpenAI预计亏损50亿美金,Anthropic亏损超过30亿美金,这还是在它们以较低价格从合作伙伴获得算力的基础上。LLM的主要成本是人员成本和算力成本,而算力成本居高不下的主要原因是对英伟达高性能GPU的高度依赖。资本圈和科技巨头迅速看到了算力这个高利润市场,同时出于长期的战略考虑,已经开始积极布局研发替代品,例如针对推理任务和差分计算的Celebras的 Wafer-Scale engine、 Groq的语言处理单元;谷歌的TPU和量子芯片以及软银投资的Arm结构 GraphCore智能处理单元等。所以笔者认为,算力成本从长期看来是会大幅度下降的,但短期内英伟达仍然拥有垄断性优势。

    ​ 国内由于算力资源有限,致使各LLMs工程团队都在如何高效利用资源上深入探索,也取得了不少成绩。这里最值得一提的就是DeepSeek V3,该模型使用了< 预期10%的算力资源完成了一个超过6000亿参数的MOE模型,且这个模型已经开源,所以可信度极高。笔者认为DeepSeek的多头潜在注意力机制(MLA)一定 起到了重要作用。更令国人振奋的是,DeepSeek随后发布的DeepSeek-R1模型在很多方面都可以媲美gpt–o1。这里为DeepSeek的模型工程团队点赞,你们太棒了!

  6. LLM到底是真正理解了自然语言还是只是鹦鹉学舌?

    ​ 这个问题应该是业界最具争议的问题,没有之一。有些专业人士认为AIGC会在数千天内实现,认为LLM的智能程度已经超越了人类;有些研究者把LLM比作“句子机器”、“随机鹦鹉”,认为这些模型只是概率性地组合它们之前遇到的文本模式来生成文本,并不理解所写内容的实质,这两种观点都有行业大咖站台。这里,笔者分享一下自己的观点供读者参考:本人倾向于后者。大家都知道与LLM交互,需要输入提示词,而表达相同意思的不同提示词产生的结果会有很大不同,模型所表现出来的性能也会有天壤之别,所以诞生了“提示词工程”这个子领域。这个现象恰恰说明了LLM的语义理解能力还是有欠缺的,很明显和人类存在明显距离。

  7. 我们该如何理解大语言模型呢?

    ​ 首先,大语言模型和多模态模型所表现出来的能力主要是围绕着文、图、视频、音频。我们可以看出这四个要素都是信息的某种承载和表现形式,由此笔者认为LLM在一定程度上具备了信息编解码能力;其次,模型在训练过程中从各种数据源中积累了大量信息,这些信息蕴含有大量知识,所以可认为LLM有一个高度压缩的知识库;再次,在监督式微调过程中,LLM具备了和人类进行语言沟通的能力;最后,通过统计归纳学习(或者是模式匹配),也许LLM发展出了一定的**“推理能力”**,如下图:

在这里插入图片描述
在这里插入图片描述

  1. LLM的技术发展情况如何?

    ​ 2024年11月,The Information爆料称:“传统的大模型Scaling Law已经撞墙,OpenAI下一代旗舰产品Orion遭遇瓶颈",路透社也发文表示,由于当前方法受到限制,OpenAI和其他公司正在寻求通向更智能AI的新途径。有趣的是,The Information第二天就改变了说法,说改进大模型必须找到新方法,并不是说Scaling Law已经终结。离开OpenAI创业的传奇科学家llya Sutskever则表示,现在重要的是”扩大正确的规模“。一个不争的事实是:比起GPT-4o,Orion几乎没有任何改进,谷歌的Gemini 2.0被爆也存在同样问题;Anthropic据传也已暂停Opus3.5模型的工作。NYU教授马库斯更是直接单方面宣布胜利:”游戏结束,我赢了…我早就说过,GPT正在陷入收益递减阶段。“

    ​ 虽然也有不少大牛级人物反驳上述观点,并在行业中引发了激辩,但笔者认为LLM的技术发展已经进入了瓶颈期。

    ​ 从算法上看,我们细观Transformer架构的底层原理,会发现实际上这种架构几乎已经捕获了训练数据所包含的所有语言相关信息,对于特征的提取和筛选也达到了相当高的水平,可以说已经把统计归纳法发挥得淋漓尽致了。至于其他基于Transformer的变种架构和微调、对齐、后训练算法都不足以使模型的性能发生质变,最多是在某方面有所提高或者降低训练成本而已。我们期待新的方法论的诞生而不是完全的数学挣扎。数学本身是一个强有力的工具,也可以被认为是一切工程技术的哲学,但它并不是对客观世界的精确描述。试想一下,你可以在自然界中找到任何一组真正的随机数吗?可以找到任何一个变量完全符合正态分布吗?肯定找不到!

    ​ 说到模型所依赖的数据,人们经常谈论的是数据的质量和数量。从质量上看,几乎没有可能找到海量的完全正确的训练数据;从数量上看,据专业人士分析到2026年训练数据将会被耗尽,采用合成数据会成为一个必然选择,这个问题后面我们会做进一步讨论。笔者认为:即使有更多的高质量数据,也并不能使LLM的性能发生质变,因为造成模型的幻觉和对齐等问题的根本原因是模型底层工作原理先天的不足和缺陷而不是数据的问题

  2. LLMs是否具备智能?

    ​ 目前的主流答案是”说不清“,但是肯定与人类智能相比还有很大差距。如果深入讨论这个问题,最后一定会收敛于”智能“这个概念的定义问题。笔者本人偏向的观点是:LLM不具备智能。人工智能肯定会在全球产生不可忽视的影响,但也没必要过分夸大。可能有些读者会说Google的AlphaGo/AlphaZero在围棋上击败了顶级的人类棋手,但首先AlphaGo和AlphaZero是针对一个单一任务的,其次它与大语言模型没有任何关系,再次它的主要工作原理是依赖强化学习、马尔可夫决策过程和蒙特卡洛树搜索来实现的,解决的核心问题是在特定场景下的搜索、记忆、计算和评价问题,最后就是AlphaGo和AlphaZero的成功背后是一个科学团队和高成本的计算机集群,所以笔者认为这虽然是一个突破,但依然不能代表智能。

    ​ 很多人在网上留言声称:“人工智能会超过人类智能,会代替大部分人类工作”、“人工智能会产生自我意识、从而反过来统治甚至消灭人类”、“人工智能模型已经学会投机取巧,会主动欺骗人类”等。不知道这些人是为了流量还是科幻片看多了,又有什么根据这么说。我们说,人类最高端难解问题:两暗一黑三起源,暗物质暗能量、黑洞、宇宙起源、生命起源,最后一个最难就是意识起源。我们连地球上的意识起源的原因都不清楚,又怎么可以说人工智能可以进化出自我意识呢?

    ​ 至于说模型的投机取巧和欺骗,有兴趣的读者可以看看规范博弈(specification gaming)Reward HackingGoodhart’s Law,就不难理解为什么会发生这种事情了。简单来说,是人类给人工智能模型所制定的评价方法和策略的不连续、不一致和其固有缺陷造成的,和模型是否智能并没有任何直接关系。

    ​ 笔者不否认LLM所取得的巨大进步,但根据其构建方式的底层原理,仅凭借归纳学习和模式匹配是否能达到人类的智能水平呢?个人对此表示怀疑。

3.2 应用领域

​ 大语言模型或者基础模型能力的提升大大带动了人工智能技术的行业应用,可谓是百花齐放,这里先分享一张模型的主要能力视图:

在这里插入图片描述

图片来源

下图为笔者总结的基础模型从生产到应用的整体框架图:

在这里插入图片描述

​ 本章我们重点关注应用层。笔者认为,LLM的应用可以分为三类:通用型、任务型和垂直类应用,各类应用的细分应用点中标红的是笔者认为目前应用相对比较广泛的,读者会发现对数据和算力的需求充斥着每一个层面。人工智能技术已经在文案、研发、科研、媒体运营以及行业垂直类解决方案等多个领域有了大量应用,但就目前看来还停留在工具层面,未能进入决策层。整体看来,迄今为止,人工智能模型还没有产生杀手级应用,笔者认为这与人工智能技术的能力边界和其底层工作原理是密不可分的。

3.2.1 应用类型

​ 让我们来看一下基础模型的主要应用点的情况:

  • 搜索方面

    ​ 从国际上看,Perplexity.ai推出了较为亮眼的AI搜索产品,估值已经飙升到了90亿美元;OpenAI也推出了自己的搜索产品SearchGPT;Google被迫应战,在搜索引擎中加入了AI功能;微软是最早在必应搜索中融合ChatGPT的功能的。国内,百度搜索和360搜索也相继推出了AI搜索功能。这些情况说明这些科技巨头和独角兽都非常重视AI在提升用户搜索体验的能力,且希望由此提升或者保持自己触达终端用户的能力。从C端产品和互联网行业的商业逻辑上看,触达用户的能力是绝对的核心能力,它还可为企业积累与用户交互的数据资产,可以说是企业保持竞争力的一个重要推手。

    ​ 从AI搜索所提供的功能上看,主要是提供了语义搜索能力和对所检索的信息的摘要总结能力,这比词袋搜索模型肯定是一个进步,也提高了用户体验。但是这种能力的提升相比于所付出的成本而言,其优劣就不容易评估了。我们不妨仔细思考一下,AI搜索所能提供的语义能力对用户的真实价值提高了多少呢?是否真正解决了用户痛点?用户需要使用此功能的场景占比为多少呢?其给出的结果是否真实可信呢?笔者的观点认为是十分有限的,所以笔者认为用户不会为此而单独付费的,依靠这个直接变现是不太现实的。实际上Google多年前就可以提供语义搜索能力,但是它为什么没有这么做呢?答案显而易见,就是因为投入产出比太低了。

    ​ 尽管如此,科技巨头和一些行业独角兽还是会发力AI辅助搜索引擎或者垂直类搜索,但这是个囚徒困境的博弈问题,长期看来并不符合商业底层逻辑。

  • 文案方面

    ​ 生成式人工智能在文案相关任务上确实表现出了比较亮眼的能力,例如翻译、总结、摘要、写作、修订等方面都显示出了超出人们预期的巨大潜力,长期看来,会在较大程度上提高人们的工作效率。

    ​ 同时,由于目前人工智能技术的局限性,其在文案任务上尤其是对准确性和多样性要求比较高的地方依然不能脱离人的审查和纠正,致使它依然只能提供工具层面的服务,所以它所带来的实际经济价值并不高。另外,写作、翻译等具有文章创作属性的文化活动本身是人类思考过程的体现,是一种自我能力提升和自我价值实现的过程,如果由机器替代完成,这对人类演进和发展是一件好事吗?例如,大量同质化且写作风格雷同的文章充斥着互联网、博客和社区网站由大量机器模拟人类生成的发言和评论,笔者没有理解这对人类的进步、社会的发展有什么正向作用呢?如果我们只是为了提高文案的生产效率而忽视了产生这些文案的原始价值和动机,这个发展方向真的正确吗?笔者认为这些问题值得大家重视且深入探讨。

  • 视频方面

    ​ 逻辑上来说,生成式人工智能技术在视频生成方面有较大的商业场景,例如影视制作、教学视频、宣传类视频等会有大量需求。记得著名影片《阿甘正传》开头和结尾中分别有个羽毛从空中飘落和升上天空的长镜头,据说这两组镜头的制作是依赖计算机视频制作技术的,耗资100万美元,可以推想人工智能可能可以在类似任务上大幅度降低制作成本。

    ​ 从技术上看,VLMs(Vision Language Model)早期采用的都是类似Transformer的架构,因为编解码器结构对视觉和语言的对应关系有很好的高维抽象解释,后又发展出了对比语言-图像预训练(CLIP)架构及其一系列变种,可能还伴随着扩散模型,整体看来取得了卓越的进步。我们审视VLM的构造过程就会发现它与LLM的底层逻辑实际上是一致的,所以LLM存在的问题和局限性,它也会有甚至有可能会更严重。正因为此,笔者认为目前的视频大模型还远没有达到商业场景的需求,充其量也就能起到简单的辅助作用,短期内不太可能大规模落地变现。

    ​ 另外,笔者认为Google(拥有Youtube)和火山引擎(抖音旗下)在这方面的发展潜力较大,因为它们获得训练数据的成本较低。

  • 研发方面

    ​ 人工智能在研发方面大家谈论最多的主要是两个领域:软件程序研发和科学研究发现。编写程序本质上就是把人的意图翻译成计算机系统可以识别的语言和指令,鉴于LLM在自然语言理解和生成上取得的成绩,我们可理解其在经过训练后会成为软件工程师的一个有力工具。目前几乎所有主流LLMs都具备辅助代码编写的能力,这方面的佼佼者如Github Copilot、Cursor。2023年1月的Communications专栏中,Matt Welsh提出了这样的观点:“编程将过时,–编写程序的传统想法正在走向灭绝,事实上,除了非常专业的应用程序之外,大多数软件将被经过训练的AI系统所取代“。这种观点在哥本哈根大学的计算机科学Hans教授看来未免太过分了。Hans教授通过分析计算理论中的定理所施加的基本限制,得出结论:距离编程的终结还远得很。笔者个人倾向于Hans教授的观点。因为软件研发不仅仅是编码,而是一套需要整体规划的复杂的系统工程。从LLM的形成过程和所能使用的训练数据来看,它还不具备这个能力,即使是编码,也还远不如一个高级工程师。

    ​ 在科学研究方面,有观点认为人工智能很快会超过和取代科学家,成为科学创新的主力。持有这种观点的人可能是因为DeepMind AlphaGeometry 和 AlphaFold分别在几何问题和蛋白质几何预测问题上取得的成绩。我们很高兴看到出现这些令人鼓舞的工具,但也要认识到这两个项目都不属于大语言模型,而且离替代人相距甚远。同样的,LLM在解决数学问题上虽然取得了很大的进步,但FrontMath数学测试集使所有LLM的正确率<2%,这足以说明LLM对数学的理解能力还有很长的路要走。

    ​ 谈到科学创新能力,笔者不太理解LLM有什么可能会拥有这个能力。我们说真正的创新的一个重要元素都是颠覆以前的认知或者找到未发现的模式,而LLM是通过统计归纳法从以前的数据中学习模式和知识,这种情况下又如何创新呢?笔者认同AI会成为科研的一个有力工具,但不认为它会产生真正的创新或者超越人类。

  • 聊天或问答服务

    ​ 此类服务的应用场景大概可分为陪伴类、知识类和客服类。例如陪伴类的Character.ai和Talkie.ai,此类应用的最大优势就是用户粘性较大,但是其经济价值不高,发展空间有限;客服类服务的发展可以说是步履维艰,笔者分析最重要原因是企业没有找到一个合理的理由在客服上投资一个对用户体验的提升难以评估,且需要替换掉已经建立好的客服系统和流程的新解决方案。

    ​ 知识问答或者聊天类应用是LLM的一个典型的应用场景,也是百模大战的主要战场。国际上有OpenAI、Anthropic、Google、微软等科技巨头,国内例如DeepSeek、Kimi、豆包、讯飞星火、智谱AI等,这些应用几乎都有PC版和手机版,且提供的是类似的功能和服务,国内应用几乎都是免费的。笔者感觉大部分用户将这些应用当作一个好一点的搜索引擎使用,从技术实现方案上看,估计是用公开的搜索引擎来获得信息,然后使用LLM的总结摘要能力输出结果,可以认为是一种简化的、成本可控的RAG方案。笔者不清楚类似应用在没有解决用户痛点的情况下,除了向资本方证明自己触达用户的能力,又有什么可以长期持续的新的商业落地场景?

补充结论1
AI使用率情况:
  • 2023和2024两年,AI使用率增长迅猛;相比于2023年,2024年并无明显飞跃。
  • GenAI的使用率一直保持较强的增长势头。
  • 行业板块上面,AI在信息、科学技术、教育方便使用率较高,同时保持较好的增长。
产品化情况:
  • GenAI在客户服务、技术、业务方面产品化较多。
  • 教育、医疗和制造业板块的GenAI产品处于试验测试阶段较多。
企业对AI的投入情况
  • 在技术方面,企业投入做多的是云计算软件,AI投入占前者的18%,而GenAI只占不到1%。
  • 相比于AI,企业更多投向数据管理、信息安全和云服务。
  • IT、市场和产品运营是企业在GenAI上投入最多的三个功能单元。
  • 企业使用或者投入GenAI的最大顾虑为:数据隐私、不确定的ROI和结果、合规性、与企业自由数据和业务融合问题。

笔者认为

  1. 在GenAI的长期博弈中,云计算厂商或者拥有独占高质量数据资源的玩家或先实现盈利,拥有护城河GenAI企业非常重要。
  2. 各行业垄断者争相发展GenAI,其核心目的是通过此来进一步压缩竞争对手的空间,稳固其行业霸主地位。
  3. 相信有相当部分的GenAI的跟随者或者使用者是处于FOMO(Fear Of Miss Out)心理,渴望获得其带来的早期价值。
  4. 一些在人工智能领域稍有沉淀的企业或者根本没有什么,也希望通过GenAI来改变行业游戏规则,进而发展成为独角兽。
  5. 资本会持续投入AI基础设施建设领域和数据相关解决方案。
3.2.2 行业应用

​ 前面我们已经说过人工智能在行业中的应用早就开始了,而并非发生在chatGPT发布之后。本节我们重点讨论生成式人工智能的行业应用。从各种研究报告展示的结果来看,各研究报告的说法不一,不少报告并没有明确所指的是人工智能还是生成式人工智能,但有一个共同点就是显示了各企业都在使用GenAI或在使用GenAI的路上,笔者所见所闻也是如此。

  1. GenAI在行业中的使用情况如何?

下图中可以看到从2023年到2024年,问卷调查回应显示采用AI的占比从55%上升到了72%,而使用GenAI的从33%到了65%

在这里插入图片描述

图片来源:https://www.mckinsey.com/capabilities/quantumblack/our-insights/the-state-of-ai#/

​ 下图展示了美国企业使用AI的行业应用情况。(注意这里是AI而不仅仅包括GenAI,高盛的报告显示只有10%的美国企业采用了GenAI相关技术)。从2023年到2024年,AI的使用率在各行业中的增长并没有呈现很强的上升趋势,下六个月的预期也显得很平庸,在信息和教育领域的预期较高。

在这里插入图片描述

图片来源:https://allscience.substack.com/p/have-we-over-invested-in-ai

  1. GenAI在行业中的产品化情况如何?

​ 让我们来看一下各行业具体应用GenAI的情况:

在这里插入图片描述

图片来源:https://softwarestrategiesblog.com/2024/02/17/it-marketing-show-strongest-interest-in-adopting-gen-ai-first/

​ 可以看出,客户服务、技术和业务服务分别占GengAI产品化的前三位而比较积极进行试验和测试的是医疗、制造业和教育行业

  1. 各行业对GenAI的投资主要聚焦在哪些环节?

在这里插入图片描述

图片来源:https://www2.deloitte.com/us/en/insights/topics/emerging-technologies/ai-investment-opportunities-tech-ecosystem.html

​ 上图中,纵坐标将行业归类为消费市场、能源和工业、金融、生命科学和健康、技术传媒与电信、政府与公共服务;横坐标展示了GenAI的主要投资领域包括数据管理信息安全、云计算、传统人工智能、通信网络和硬件,其中前两者是平均投入占比最高的。

[!NOTE]

笔者认为有必要提醒读者,类似这些报告基本上都是通过问卷调查得到的,各机构所出的报告的数据差别较大,鉴于所挑选的答卷人的身份,实际的数字应该低于图中所展示的数字。例如,在谷歌云的一项调查(超过2500人)显示61%的答卷人声称他们已经部署了至少一个GenAI应用产品;但Dataiku的调查(200人)报告说只有20%的GenAI应用是产品化的。Datanami的专业人士透露投入GenAI的企业只有1/3或者更少将试验阶段落地到了产品。Gartner的一份报告指出到2025年底,超过30%的GenAI项目会被放弃,主要原因是数据质量问题、不足的风险控制能力、成本增加和不确定的价值回报。

笔者认为,不少企业投入GenAI并不是因为确信其能带来业务提升或者变革,而是预期其可能带来的较高的早期价值;而行业垄断者是希望依靠其较强的技术能力和资源,借助GenAI来增加其比较优势,巩固其行业霸主地位。

  1. 企业对GenAI的投入情况

在这里插入图片描述

​ 图片来源:https://menlovc.com/2023-the-state-of-generative-ai-in-the-enterprise-report/

​ 上图展示企业的技术投入中,云软件投入最高,整个AI投入只占云软件投入的18%,而GenAI的投入不足1%

另一篇来自Boston Consulting Group报告显示企业对GenAI的投资增长了3.3%,但更大的IT投入增长来自传统机器学习(30%)、安全基础设施(27%)、云服务(30%)和分析服务(18%)。

  1. GenAI的ROI

    ​ 虽然有部分GenAI项目出现问题,但也有不少企业声称从GenAI的投资中获得了收益。谷歌云报告说有86%采用GenAI的企业获得了收益,平均收益率为6%。该报告调查了2500个首席级别高管,其所属企业年收入都超过1000万美元;报告显示GenAI主要助力于四个方面:生产力(45%)、安全(56%)、业务增长(77%)、用户体验(85%)。

    ​ 来自EY的研究报告采访了来自多个行业的资深主管)声称,有95%的受访人声明其企业已在AI技术(这里指的是AI,不仅是GenAI)上投入了超过1000万美元,并且会加大AI投入(从16%增加至30%)。另外 EY AI Pulse Survey(500为企业领导人) 报告称 AI为企业提升了运营效率(77%),员工生产力(74%),客户满意度(72%)。

    ​ 2023年,Gartner对800位IT领导者进行了问卷调查,发现GenAI产生了平均15.8%的营收增益,15.2%的成本节约,22.6%的生产力改善。请见下图:

在这里插入图片描述

​ 图片来源:https://www.bigdatawire.com/2024/08/30/genai-adoption-by-the-numbers-2/

上图归纳了GenAI主要带来成本缩减的领域:消费领域的商业App、嵌入GenAI API的应用、扩展使用GenAI模型、定制化调优GenAI模型、建立定制化的GenAI模型;对应的使用场景分别是编程助手、个性化销售内容声称、基于RAG的文档检索、虚拟助手、医疗保险和金融服务的LLM。

​ 2024年,来自Deloitte’s Technology Trust Ethics的一项调查发现有77%的首席级别管理者非常确信其全体员工已经装配好合乎职业道德标准的AI辅助决策,然而其中不到四分之一允许专业人员独立做出这些决策。报告还指出有77%的回应者认为保证供应链是GenAI最正向的影响,其次是品牌名誉(75%),收入增长(73%);而对于员工层面,企业预测AI会在员工留存(82%)、员工幸福度(77%)和员工专业教育(77%)上起到积极作用。

笔者个人对于上述报告中的结论不是非常确认。主要原因:1)所采访的人基本上都是高管,他们选择了投入GenAI,即便GenAI并没有带来实际价值,他们也有动机夸大GenAI的效用。2)不清楚有些方面的成本节约是如何做到的,例如采用RAG来增强文档搜索,RAG的技术复杂度肯定会带来的技术投入成本增加,不知道在哪方面会解决成本?3)建立私有模型的成本非常高,无论是在医疗、保险还是金融服务。

  1. GenAI投入了企业的哪些功能单元

    Dresner Advisory Services在超过全球8000个企业和机构中展开调研,答卷人有50%来自北美、26%来自欧盟、19%来自亚太、6%来自拉丁美洲。调研报告显示企业中最先尝试GenAI的部门为IT市场运营产品相关部门。44%的IT和36%的市场方面专业人士回应采用GenAI是当前的主要聚焦点。

在这里插入图片描述

​ 图片来源

​ 该报告还显示63%的企业认为CRM数据对于采用GenAI最为关键,财务数据其次,然后是呼叫中心和供应链数据。

  1. 什么因素限制了企业对GenAI更大范围的应用

    在这里插入图片描述

    图片来源

    ​ 调查问卷中显示企业使用生成式人工智能最多的三个顾虑为:不确定的投资回报数据隐私保护企业数据如何与AI融合问题。

    Dresner Advisory Services的报告显示企业对于采用GenAI最担心的前三个问题分别是:数据隐私合法性与合规潜在的不良结果

在这里插入图片描述

​ 从行业上看,笔者相对比较看好GenAI与医疗和教育的深度结合,很可能会写几篇针对特定行业与人工智能相关话题的博客。

3.2.3 生态系统

​ 笔者凭自己的理解,画了一张围绕生成式人工智能的生态系统的简图如下:

在这里插入图片描述

​ 简单一点,这里无非就是投资者(出钱的)政府(监管和治理的)算力提供者(卖铲子的)有数据的做模型的做应用和解决方案的用户

​ 整体产业链并不十分复杂,从目前的情况看来与其他产业生态系统相比有明显的不同,下面归纳一下其主要特点:

  • 只有基础设施提供者(包括诸如英伟达的算力提供者和云计算服务商)可以从整个产业链中盈利,目前没有证据显示其他角色可以做到这一点。
  • 诸如微软、谷歌、字节跳动,这些科技巨头有能力覆盖整个产业链的多个角色。也就是说,他们可以覆盖从投资、模型生产、提供解决方案、云计算、触达用户等多个环节,这会使他们在长期的竞争中处于优势地位。
  • LLM发展到今天这个阶段已经使用了互联网上的几乎所有文本数据。鉴于高质量数据对于模型性能的重要性,数据生产和数据加工者在整个生态系统中将会发挥越来越重要的作用,有机会会发展出一定的财务收入,尤其是对拥有专域数据的企业和组织而言。
  • 企业用户大体呈现观望和尝试的态度,即使有需求也是定制化、项目化的,而非产品化的。这会增加解决方案提供者递交项目的成本,致使其盈利空间缩减。同时,由于生成式人工智能不是完全可靠的,企业用户使用AI服务或者构建私有部署AI系统大多都是为其内部流程和员工服务的,但是可想而知,各企业的业务流程系统较为复杂,标准也不统一,与新AI系统的结合难度巨大。个人认为大部分的项目将不会起到实质的作用。虽然近一年以来国内涌现了很多LLMs相关项目招标,但如果我们仔细观察不难发现,项目甲方几乎是清一色的中字头的央企和国企;笔者认为这是政府高层希望资金流入科技企业的一种手段而已,并没有期望所谓的这些AI项目能够带来真实的价值。
  • 至于针对C端用户的AI应用,虽然五花八门,但同质化严重,迄今为止还没有发现长期可持续的盈利模式。

​ 从上面罗列的几点,我们进行简单的分析。首先,我们可以看出整个生态系统还不成熟,工业界依然在探索长期可持续发展的商业模式。虽然资本圈依然看好这个领域,但笔者认为投资人主要是被人工智能可能会带来的生产力可能性边界的扩张的巨大潜在增长空间所吸引,另外就是OpenAI所展示的强劲地触达用户的能力也给出了变现的另外一种可能。不过,前者所叙述的故事未必成立!其次,我们可以看到,无论是否会产生杀手级应用,基础模型的能力都是最关键的因素,这也就是出现百模大战的原因。基础模型的构建、更新和迭代都是非常需要资源的持续投入,尤其是在没有稳定的资金支持的情况下。所以,笔者认为在AI应用落地场景受限、产品同质化严重的场景下,没有护城河的企业很难长期维持,同时资本圈也不会无限期地投入。因此,概率上说AI领域会在3年内收敛,资源会进一步向科技巨头、独角兽倾斜。再次,企业解决方案提供者和AI应用提供者所需的门槛较低、技术壁垒不足,很容易被抄袭或者被模型构建者所替代。相信用不了太长时间,绝大多数这些套壳应用会收敛到少数具备特色、或者垂直类行业AI应用服务企业。

最后,我们从长期视角看一下还有哪些企业会在整个生态系统中获得收益,笔者认为答案是:云服务提供商拥有垄断业务的科技巨头可低成本产生大量数据的行业垄断者,也正是他们在全力推进整个AI生态系统的发展。

  1. 云服务提供商

    ​ 试想一下,模型构建者通过什么途径使用算力?大语言模型通过什么途径提供对外服务?云计算肯定是一个成本优化的选择。云服务厂商可以对外提供基于LLMs的IaaS、PaaS、SaaS的服务,无论产生什么样的AI应用服务,对云计算的需求肯定会增加。这也正是微软扶持OpenAI、谷歌和亚马逊扶持Anthropic的一个直接原因。

  2. 拥有垄断业务的科技巨头

    ​ 拥有较强技术能力的行业垄断者,例如出版行业的爱思唯尔、线上零售业务的亚马逊等,类似这些企业本身都在自己的行业市场中拥有较大市场份额,而且其核心业务并不受人工智能技术波动的影响。它们可以融合LLMs技术增强其核心业务对用户的黏性或者降低其运营成本,从而达到压迫竞争对手、扩大其市场份额的目的。举例来说,亚马逊可以为其用户开发虚拟智能代理来引导用户购物从而提高用户体验;爱思唯尔可以借助LLMs的自然语言理解和处理能力降低其从众多论文中提取高价值信息和知识的成本,更好地为其客户服务。

  3. 低成本获得大量数据的行业垄断者

    ​ 人工智能的演进离不开大规模数据,可以持续以低成本获得大量数据将会使模型构建者拥有长期优势。例如,字节跳动的平台吸引了很多人投放视频、图片和文本数据,相信在日后的技术博弈中会使其拥有比较优势。我们可以看到字节旗下的火山引擎在全力推进生成式人工智能在视频领域的应用,这正是说明此点的一个强有力的证据。

四. 综合分析

​ 在本文的最后一节,笔者尝试从风险与收益、社会影响和金融视角等多方面对LLMs进行综合性分析。

先说结论:笔者认为,目前人工智能尤其是基础模型和生成式人工智能的发展对整个社会带来的风险已经大于收益,这个缝隙还在不断扩大。从目前人工智能的主流实现方法的底层逻辑上说,它要达到人类智力水平是否不可能或者需要太长时间都是值得推敲的。尽管如此,历史的车轮已经启动就不会停止,我们只能说AI的未来可期。

AI的次贷危机

AI 经济影响被夸大?MIT 教授Acemoglu ,2024年诺贝尔经济学奖获得者

​ 相信各位读者在网上看到的关于AI的正向说法是铺天盖地,建议可先阅读一下这两篇文章,笔者这里稍作总结和摘要。

​ 第一篇的作者,既国家媒体关系和公共关系公司 EZPR 的首席执行官 Edward Zitron,他对AI尤其是GenAI的看法非常悲观。Zitron列举了OpenAI、微软、Anthropic在基础模型上入不敷出的情况,尤其是发生在OpenAI身上的种种负面事件,而模型的表现始终令人失望,没有任何企业可以证明这种巨额投入的合理性,甚至不能给出一个明确的发展计划和路线,他认为如此多的科技巨头投入巨额资本却得到了若干个类似的成果,这实在令人不满;人工智能存在巨大的泡沫,当破灭时会重创社会对于科技创新的信心。

​ 第二篇记录了与2024年诺贝尔经济学奖获得者、Daron Acemoglu教授在写了一篇关于人工智能的经济影响力和潜在问题的论文后的一次公开访谈,他的观点并不像Zitron那么极端。Acemoglu对于人工智能所带来的经济影响的预测远小于麦肯锡和高盛的经济学家和分析师,他认为可能AI只会影响不到 5%的工作任务。未来十年内,美国的生产力可能只会提高约 0.5%,GDP 增长可能只有 0.9%,暗示AI目前炒作远大于其真实价值,而AI的发展方向定在自动化或者操纵社交媒体来获取消费者并不是使社会最具生产力的方式。Acemoglu教授还认为所有这些关于超级智能的讨论,以及 AI 在 20 年内做所有人类能做的事情,而且比人类做得更好等等,都是误导性的;AI的发展在发达国家和发展中国家将会大有不同。

高盛关于生成式人工智能的研究报告,题为"GEN AI: TOO MUCH SPEND, TOO LITTLE BENEFIT?"

​ 此报告介绍了多位行业专业人士对人工智能发展的观点,重度介绍了Acemoglu教授的看法,而高盛全球资深经济分析师Joseph Briggs和另外两位分析师却对AI的发展非常乐观;同时高盛的全球资产研究的负责人Jim Covello也对AI目前的情况表示疑虑,他认为AI的整体投入太高了,为了证明这些投入是值得的,AI必须能够解决非常复杂的问题,但显然AI远远没有达到或者AI没有被设计为沿着这个方向发展。

4.1 技术维度

​ 基于前面我们所讨论的人工智能技术方面的话题, 目前的GenAI仍然处于起步阶段,待解决的问题很多,诸如推理能力、幻觉,规划能力等问题都对基础模型的性能提出了挑战;其可持续的理论基础Scaling Law大概率遇到了障碍,学术界在其发展方向上还没有达到共识,主流方法雷同,似乎依旧没有摆脱模式匹配的嫌疑。笔者认为,GenAI的方法论已进入了瓶颈期,以当下人工智能的能力而言还远远没有达到解决企业痛点或者核心问题的地步;高昂的成本、数据的匮乏进一步限制了模型的技术发展速度。

​ 可能有人会说deepseek在成本控制上的成功。其实,整体AI的成本从长期看来一定会下降的,但相比于其带来的价值,这种多个企业重复投入同一件事情所带来的成本支出还是太高了。另外,业界认为2025年互联网上的文本数据都会被消耗殆尽,对于图像数据会晚几年,模型训练者早就已经开始使用合成数据来弥补训练所需。但是,研究人员已经发现使用合成数据可能会造成MAD(Model Autophagy Disorder,模型自我吞噬紊乱) 现象,这种现象会导致模型崩溃,已发现的受影响的模型包括VAE、GMM和LLM。虽然这些顶级数据科学家一定会找到方法来控制这个现象,但使用合成数据还会带来其他风险,后面会谈到这点。

4.2 市场维度

​ 以目前人工智能的能力而言,虽然它在很多方面会给人类提供助力,例如药物研发、代码编写和智能搜索等领域,但它仍然处于工具层,还不能认为起到了变革性的作用,时至今日,我们依然没有看到基于人工智能的杀手级应用。相信无论是AI独角兽还是科技巨头,在LLM上面肯定是入不敷出的;至于企业使用GenAI所投入的预算占比还是比较小的,试水的成分居多。很显然,GenAI的市场还没有打开,这种情况是不能长期持续的。

​ 即便LLM能够解决企业痛点,但依然不足以提高企业的竞争力,因为其竞争对手可以采用同样方法。一个好的状态是每个企业的效率因为人工智能工具的加持都提高了,但请各位读者思考一下:当前大多数企业的低效或者市场失效难道是因为技术不足吗?难道是缺乏强有力的工具吗?这里面的底层逻辑究竟是什么呢?笔者认为这些问题肯定与人工智能技术无关。

4.3 资本维度

​ 尽管当下人工智能技术的发展已经暴露出了诸多问题,学术界与工业界也存在多种声音,然则互联网大厂和资本圈对其的投资热度不减,生成式AI的投资更是激增。我们细看之下,会发现资本圈的反应和互联网大厂还是有不同的,相比于互联网大厂的持续投入,资本方显得更加谨慎。请看下图,整体AI的投资从2022年开始已经下滑,投资的主要组成是并购和私募股权投资。

在这里插入图片描述

​ 图片来源:Standford AI Index Report 2024

​ 笔者猜测资本圈和互联网大厂持续押注人工智能并不是因为他们绝对相信AGI一定可以实现、也没有100%肯定AI可带来巨额回报,可能的原因如下:

资本方
  • 投资本身就有赌博和猜测的成分,目前看来投资人工智能是个不错的选择,可讲的故事较多。
  • 人工智能技术有可能带来生产可能性边界的扩张。
  • 不一定需要所投资的企业赚钱,它只要值钱就好。
互联网大厂
  • 需要一个事情来引领整个产业,因为各个业务的边际收入已经越来越低了。
  • 较低的数据获取成本。
  • 充足的人才储备和技术积累。
  • 与本身业务有结合点。

​ 最后,笔者认为所有的玩家都在囚徒困境中,传统企业投入这个领域多半是羊群效应,资本方会持续投入AI基础设施建设和数据获取、治理、提升相关解决方案提供者。但请注意,资本方的任何投资都是有周期的,到达投资周期后如果没有足够的回报,资本方如果撤资,将会重创行业的发展;如果选择再次投入,这无疑有点儿类似次贷危机,风险将会扩大。

4.4 人工智能的风险

​ 前面我们已经阐述了人工智能的技术风险、市场风险、金融风险。本节中,我们会重点讨论围绕社会风险的其他多种风险。

​ (一)我们知道人工智能技术的持续发展需要源源不断的数据,尤其是高质量的数据,这种情况势必会触及有版权的内容数据,包括文本、图片和视频。长期看来,出版商不会任由科技公司在无任何补偿的情况下使用他们的数据,例如New York 纽约时报起诉OpenAI、微软版权侵权、Perplexity AI在被指过度抓取内容后,与出版社达成协议,向出版合作伙伴分享广告收入。这些事件说明模型生产者或者应用者使用高质量数据的成本会增加,这无疑会进一步加剧其技术和财务风险。还有一个问题就是版权归属问题,模型学习了很多人类的原创内容,可以是文字或者图片等,然后模型“创作了”新的内容,那么这个新内容的版权应该属于谁呢?如果说属于模型厂商或者是使用模型的人,那么这无疑会损害原创内容作者的利益,长此以往,是否会降低人类创作的欲望和能力呢?这可以被理解为一种社会风险

​ (二)前面我们说过在数据不足的情况下,基础模型将无可选择地使用合成数据也就是由模型产生的数据。我们知道目前LLM无法规避幻觉问题,那这种使用合成数据的方法就会衍生出来一个问题,就是用包含错误和伪造的信息的数据进行训练,这种错误在多次训练中将被指数级放大,这将使LLM面临由数据质量导致的训练风险,很难相信研发人员可以完全规避这个问题。

​ (三)模型训练所依赖的数据大部分来自于互联网,但互联网的发展在南北半球是不平衡的,其承载的信息所代表的价值观是存在偏差的;进一步说,互联网的价值观的主要组成是发达地区 > 发展中地区 > 贫穷地区,那么基于这种有偏的价值观训练出来的模型是否也是有偏的呢?这是不是人工智能所带来的社会价值观风险呢。抛开地域问题,我们也不能完全无视互联网的数据代表的是主流价值观,本身就是有偏的,但这种主流价值观或者统治性的观点并不一定在所有场景和社会环境下都有助于人类社会的发展,可以肯定的是:LLM的应用和普及会使这种价值观偏差被进一步放大。

​ (四)如此多的玩家训练自己的模型,最后我们得到了多个差不多的东西。但是能量和算力消耗所引起的碳排放带来了不可忽视的环境风险

​ (五)如此多的资本投入GenAI领域,会提高机会成本的风险。因为,人工智能并不是人类所面临的唯一技术问题。

​ (六)我们认可人工智能技术的确可以提高人们的工作效率,那么请试想一下什么人最有机会使用人工智能技术,肯定是本身就可以接触到最新的前沿技术并且拥有一定资源的团体,而很多其他人会因为资源不足或者技能缺失从而有较少机会使用人工智能工具。这会进一步加大不平等,社会性偏差风险会被扩大。

​ (七)从目前的情况开来,资本和人才会进一步向高科技企业倾斜,从而增强其技术能力、影响力和控制用户的能力。从长期看来,会加剧社会性偏差和不平等。

​ (八)虽然目前GenAI还没有表现出对人类的核心价值,但利用其进行造假却可以做到以假乱真;越狱技术会使某些人可以从LLM中获得非公开信息和数据;模型在价值观上的表现还不具备强鲁棒性;用户被GenAI或者算法所产生的信息所操纵。这些都为我们带来了安全风险、数据隐私问题、用户操控风险

综上所述,笔者认为目前GenAI所带来的风险已经大于人类从中获得的收益。

抛开这些风险不谈,也先不去管本文中所谈到的GenAI发展的种种困难,即使AGI或者超级人工智能可以实现,笔者也不知道做这些为了什么?难道是为了替代人类吗?为了消灭人类的想象力和创造力,还是为了实现共产主义?

我们知道经济体是一套一环扣一环的联动体系,你赚的每一分钱都是别人的支出,所以当其他人不花钱的时候,你也很难赚到钱了。笔者很难想象当超级人工智能替代所有或者大部分人的工作时,整个社会会变成什么样子。人类将会丧失所有的进取心和创造力,这离人类的灭亡就不远了。人工智能的发展方向应该是如何辅助人类,填补人类所不擅长的任务的缝隙,而不是试图去替代人类。
人工智能模型目前的输出都是纯理性的,但请考虑一下:人类社会文明发展到今天,起主要作用的是纯理性行为还是感性决策呢?即便答案是前者,后者所起到的所用可以被忽略吗?马斯克造火箭是一个理性行为吗?项羽巨鹿之战是理性行为吗?
在相同的输入和相同的场景下,AI会输出相同的结果,很显然人类不是这样的。多样化的看法和观点、同质化的统一的观点,这两种方式哪一种对人类社会的发展更有利的。
是些什么人和团体在竭尽全力推动人工智能的发展,神话人工智能的能力?他们的真正动机究竟是什么?你是否相信他只是单纯的为了全人类的幸福。

还有一个问题请读者思考,如果AGI产生了,它控制在什么人或者组织手里呢?AGI控制在个体组织手里对人类社会追求公正、平等、幸福真的能够起到积极作用吗?

结束语

  • 任何事情都会遵循其底层逻辑,回归于其本质。
  • 天之道,利而无害;人之道,为而不争。
  • 图功易,成功难;成功易,守功难;守功易,终功难。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值