G a m m a Gamma Gamma分布
如果一个随机变量
Y
Y
Y服从
G
a
(
α
,
β
)
(
α
>
0
,
β
>
0
)
Ga(\alpha,\beta)(\alpha>0,\beta>0)
Ga(α,β)(α>0,β>0),它的密度函数如下:
f
(
y
)
=
{
β
α
Γ
(
α
)
y
α
−
1
e
−
β
y
,
(
x
≥
0
)
0
,
(
x
<
0
)
f(y)=\left\{ \begin{aligned} \frac{\beta^\alpha}{\Gamma(\alpha)}y^{\alpha-1}e^{-\beta{y}},(x\geq0)\\ ~0,~~~~~~~~~~~(x<0) \end{aligned} \right.
f(y)=⎩⎪⎨⎪⎧Γ(α)βαyα−1e−βy,(x≥0) 0, (x<0)
其中, Γ ( α ) = ∫ 0 + ∞ t α − 1 e − t d t \Gamma(\alpha)=\int_0^{+\infty}t^{\alpha-1}e^{-t}dt Γ(α)=∫0+∞tα−1e−tdt.
1. P o i s s o n Poisson Poisson分布
前面说过, B e t a Beta Beta分布是二项分布中参数 θ \theta θ的共轭先验分布族;同样的, G m m a Gmma Gmma分布族是 P o i s s o n Poisson Poisson分布中参数 λ \lambda λ的共轭先验分布族,下面给出证明:
随机变量
X
X
X服从参数为
λ
\lambda
λ的
P
o
i
s
s
o
n
Poisson
Poisson分布,即
X
X
X~
P
(
λ
)
P(\lambda)
P(λ),那么
X
X
X的分布列为:
P
(
X
=
k
)
=
e
−
λ
λ
k
k
!
(
λ
>
0
)
.
P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}(\lambda>0).
P(X=k)=k!e−λλk(λ>0).
使用贝叶斯方法对
λ
\lambda
λ的值进行参数估计,将参数
λ
\lambda
λ视为一个随机变量,随机变量
λ
\lambda
λ的先验分布服从
G
a
m
m
a
Gamma
Gamma分布,其密度函数为:
π
(
λ
)
=
β
α
Γ
(
α
)
λ
α
−
1
e
−
β
λ
=
β
α
λ
α
−
1
e
−
β
λ
∫
0
+
∞
t
α
−
1
e
−
t
d
t
(
α
>
0
,
β
>
0
)
.
\pi(\lambda)=\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}=\frac{\beta^\alpha\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}t^{\alpha-1}e^{-t}dt}(\alpha>0,\beta>0).
π(λ)=Γ(α)βαλα−1e−βλ=∫0+∞tα−1e−tdtβαλα−1e−βλ(α>0,β>0).
为了使用样本信息对参数进行估计,从总体
X
X
X中随机抽取
n
n
n个样本,记为
(
x
1
,
x
2
,
.
.
.
,
x
n
)
=
x
(x_1,x_2,...,x_n)=x
(x1,x2,...,xn)=x, 那么可以写出似然函数:
L
(
x
∣
λ
)
=
∏
i
=
0
n
e
−
λ
λ
x
i
x
i
!
=
e
−
n
λ
λ
n
x
‾
∏
i
=
0
n
(
x
i
!
)
.
L(x|\lambda)=\prod\limits_{i=0}^n\frac{e^{-\lambda}\lambda^{x_i}}{x_i!}=\frac{e^{-n\lambda}\lambda^{n\overline{x}}}{\prod\limits_{i=0}^n(x_i!)}.
L(x∣λ)=i=0∏nxi!e−λλxi=i=0∏n(xi!)e−nλλnx.
根据以上两个式子 — 先验密度函数和似然函数,可以根据贝叶斯公式得出参数
λ
\lambda
λ的后验概率密度:
π
(
λ
∣
x
)
=
L
(
x
∣
λ
)
π
(
λ
)
∫
Λ
L
(
x
∣
λ
)
π
(
λ
)
d
λ
=
e
−
n
λ
λ
n
x
‾
∏
i
=
0
n
(
x
i
!
)
β
α
λ
α
−
1
e
−
β
λ
∫
0
+
∞
t
α
−
1
e
−
t
d
t
∫
0
+
∞
e
−
n
λ
λ
n
x
‾
∏
i
=
0
n
(
x
i
!
)
β
α
λ
α
−
1
e
−
β
λ
∫
0
+
∞
t
α
−
1
e
−
t
d
t
d
λ
\pi(\lambda|x)=\frac{L(x|\lambda)\pi(\lambda)}{\int_\Lambda L(x|\lambda)\pi(\lambda)d\lambda}=\frac{\frac{e^{-n\lambda}\lambda^{n\overline{x}}}{\prod\limits_{i=0}^n(x_i!)}\frac{\beta^\alpha\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}t^{\alpha-1}e^{-t}dt}}{\int_0^{+\infty}\frac{e^{-n\lambda}\lambda^{n\overline{x}}}{\prod\limits_{i=0}^n(x_i!)}\frac{\beta^\alpha\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}t^{\alpha-1}e^{-t}dt}d\lambda}
π(λ∣x)=∫ΛL(x∣λ)π(λ)dλL(x∣λ)π(λ)=∫0+∞i=0∏n(xi!)e−nλλnx∫0+∞tα−1e−tdtβαλα−1e−βλdλi=0∏n(xi!)e−nλλnx∫0+∞tα−1e−tdtβαλα−1e−βλ
=
λ
n
x
‾
+
α
−
1
e
−
(
n
+
β
)
λ
∫
0
+
∞
λ
n
x
‾
+
α
−
1
e
−
(
n
+
β
)
λ
d
λ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\frac{\lambda^{n\overline{x}+\alpha-1}e^{-(n+\beta)\lambda}}{\int_0^{+\infty}\lambda^{n\overline{x}+\alpha-1}e^{-(n+\beta)\lambda}d\lambda}
=∫0+∞λnx+α−1e−(n+β)λdλλnx+α−1e−(n+β)λ
(
令
(
n
+
β
)
λ
=
t
)
=
λ
n
x
‾
+
α
−
1
e
−
(
n
+
β
)
λ
∫
0
+
∞
1
n
+
β
(
t
n
+
β
)
n
x
‾
+
α
−
1
e
−
t
d
t
~~~~~~~~~~~~~~~(令(n+\beta)\lambda=t)~~~~~~=\frac{\lambda^{n\overline{x}+\alpha-1}e^{-(n+\beta)\lambda}}{\int_0^{+\infty}\frac{1}{n+\beta}(\frac{t}{n+\beta})^{n\overline{x}+\alpha-1}e^{-t}dt}
(令(n+β)λ=t) =∫0+∞n+β1(n+βt)nx+α−1e−tdtλnx+α−1e−(n+β)λ
=
(
n
+
β
)
n
x
‾
+
α
λ
n
x
‾
+
α
−
1
e
−
(
n
+
β
)
λ
Γ
(
n
x
‾
+
α
)
,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(n+\beta)^{n\overline{x}+\alpha}\frac{\lambda^{n\overline{x}+\alpha-1}e^{-(n+\beta)\lambda}}{\Gamma(n\overline{x}+\alpha)},
=(n+β)nx+αΓ(nx+α)λnx+α−1e−(n+β)λ,
即
λ
∣
x
\lambda|x
λ∣x ~
G
a
(
n
x
‾
+
α
,
n
+
β
)
Ga({n\overline{x}+\alpha},n+\beta)
Ga(nx+α,n+β). 由此可直观地看出用贝叶斯原理可以将样本信息与参数的先验分布信息有效地结合起来,得出参数的后验估计。
2. 指数分布
前面指出,当随机变量 Y Y Y~ B e t a ( 1 , 1 ) Beta(1,1) Beta(1,1)时, B e t a Beta Beta分布退化为均匀分布, Y Y Y~ U ( 0 , 1 ) U(0,1) U(0,1).其实,当随机变量 Y Y Y~ G a ( 1 , β ) Ga(1,\beta) Ga(1,β)时, G a m m a Gamma Gamma分布退化为指数分布, Y Y Y ~ e x p ( β ) exp(\beta) exp(β).
当一个随机变量 X X X ~ e x p ( λ ) exp(\lambda) exp(λ)时,它的密度函数为:
f
(
x
)
=
{
λ
e
−
λ
x
,
(
x
≥
0
)
0
,
(
x
<
0
)
.
f(x)=\left\{ \begin{aligned} \lambda e^{-\lambda x},~~~(x\geq0)\\ 0,~~~~~~~(x<0) \end{aligned} \right..
f(x)={λe−λx, (x≥0)0, (x<0).
实际上,运用贝叶斯的思想,将参数
λ
\lambda
λ不看作一个固定的常数,而是一个服从某种分布的随机变量,就会发现,
G
m
m
a
Gmma
Gmma分布族也是指数分布中参数
λ
\lambda
λ的共轭先验分布族,下面给出证明:
从总体
X
X
X中随机抽取
n
n
n个样本,记为
(
x
1
,
x
2
,
.
.
.
,
x
n
)
=
x
(x_1,x_2,...,x_n)=x
(x1,x2,...,xn)=x, 那么可以写出似然函数:
L
(
x
∣
λ
)
=
∏
i
=
0
n
λ
e
−
λ
x
i
=
λ
n
e
−
λ
n
x
‾
.
L(x|\lambda)=\prod\limits_{i=0}^n{\lambda e^{-\lambda{x_i}}}=\lambda^ne^{-\lambda n\overline{x}}.
L(x∣λ)=i=0∏nλe−λxi=λne−λnx.
依旧将参数
λ
\lambda
λ视为一个随机变量,随机变量
λ
\lambda
λ的先验分布服从
G
a
m
m
a
Gamma
Gamma分布,其密度函数为:
π
(
λ
)
=
β
α
Γ
(
α
)
λ
α
−
1
e
−
β
λ
=
β
α
λ
α
−
1
e
−
β
λ
∫
0
+
∞
t
α
−
1
e
−
t
d
t
(
λ
≥
0
)
.
\pi(\lambda)=\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}=\frac{\beta^\alpha\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}t^{\alpha-1}e^{-t}dt}~~(\lambda\geq0).
π(λ)=Γ(α)βαλα−1e−βλ=∫0+∞tα−1e−tdtβαλα−1e−βλ (λ≥0).
根据以上两个式子 — 先验密度函数和似然函数,可以根据贝叶斯公式得出参数
λ
\lambda
λ的后验概率密度:
π
(
λ
∣
x
)
=
L
(
x
∣
λ
)
π
(
λ
)
∫
Λ
L
(
x
∣
λ
)
π
(
λ
)
d
λ
=
λ
n
e
−
λ
n
x
‾
β
α
Γ
(
α
)
λ
α
−
1
e
−
β
λ
∫
0
+
∞
λ
n
e
−
λ
n
x
‾
β
α
Γ
(
α
)
λ
α
−
1
e
−
β
λ
d
λ
\pi(\lambda|x)=\frac{L(x|\lambda)\pi(\lambda)}{\int_\Lambda L(x|\lambda)\pi(\lambda)d\lambda}=\frac{\lambda^ne^{-\lambda n\overline{x}}\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}\lambda^ne^{-\lambda n\overline{x}}\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}d\lambda}
π(λ∣x)=∫ΛL(x∣λ)π(λ)dλL(x∣λ)π(λ)=∫0+∞λne−λnxΓ(α)βαλα−1e−βλdλλne−λnxΓ(α)βαλα−1e−βλ
=
λ
n
+
α
−
1
e
−
(
n
x
‾
+
β
)
λ
∫
0
+
∞
λ
n
+
α
−
1
e
−
(
n
x
‾
+
β
)
λ
d
λ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\frac{\lambda^{n+\alpha-1}e^{-(n\overline{x}+\beta)\lambda}}{\int_0^{+\infty}\lambda^{n+\alpha-1}e^{-(n\overline{x}+\beta)\lambda}d\lambda}
=∫0+∞λn+α−1e−(nx+β)λdλλn+α−1e−(nx+β)λ
(
令
(
n
x
‾
+
β
)
λ
=
t
)
=
(
n
x
‾
+
β
)
n
+
α
λ
n
+
α
−
1
e
−
(
n
x
‾
+
β
)
λ
∫
0
+
∞
t
n
+
α
−
1
e
−
t
d
t
(令(n\overline{x}+\beta)\lambda=t)~~~~~~~~~~~~~~~=(n\overline{x}+\beta)^{n+\alpha} \frac{\lambda^{n+\alpha-1}e^{-(n\overline{x}+\beta)\lambda}}{\int_0^{+\infty}t^{n+\alpha-1}e^{-t}dt}
(令(nx+β)λ=t) =(nx+β)n+α∫0+∞tn+α−1e−tdtλn+α−1e−(nx+β)λ
=
(
n
x
‾
+
β
)
n
+
α
λ
n
+
α
−
1
e
−
(
n
x
‾
+
β
)
λ
Γ
(
n
+
α
)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(n\overline{x}+\beta)^{n+\alpha} \frac{\lambda^{n+\alpha-1}e^{-(n\overline{x}+\beta)\lambda}}{\Gamma(n+\alpha)}
=(nx+β)n+αΓ(n+α)λn+α−1e−(nx+β)λ
即
λ
∣
x
\lambda|x
λ∣x ~
G
a
(
n
+
α
,
n
x
‾
+
β
)
Ga({n+\alpha},n\overline{x}+\beta)
Ga(n+α,nx+β). 由此可直观地看出用贝叶斯原理可以将样本信息与参数的先验分布信息有效地结合起来,得出参数的后验估计。