伽马分布

G a m m a Gamma Gamma分布

如果一个随机变量 Y Y Y服从 G a ( α , β ) ( α > 0 , β > 0 ) Ga(\alpha,\beta)(\alpha>0,\beta>0) Ga(α,β)(α>0,β>0),它的密度函数如下:
f ( y ) = { β α Γ ( α ) y α − 1 e − β y , ( x ≥ 0 )   0 ,             ( x &lt; 0 ) f(y)=\left\{ \begin{aligned} \frac{\beta^\alpha}{\Gamma(\alpha)}y^{\alpha-1}e^{-\beta{y}},(x\geq0)\\ ~0,~~~~~~~~~~~(x&lt;0) \end{aligned} \right. f(y)=Γ(α)βαyα1eβy,(x0) 0,           (x<0)

其中, Γ ( α ) = ∫ 0 + ∞ t α − 1 e − t d t \Gamma(\alpha)=\int_0^{+\infty}t^{\alpha-1}e^{-t}dt Γ(α)=0+tα1etdt.

1. P o i s s o n Poisson Poisson分布

前面说过, B e t a Beta Beta分布是二项分布中参数 θ \theta θ的共轭先验分布族;同样的, G m m a Gmma Gmma分布族是 P o i s s o n Poisson Poisson分布中参数 λ \lambda λ的共轭先验分布族,下面给出证明:

随机变量 X X X服从参数为 λ \lambda λ P o i s s o n Poisson Poisson分布,即 X X X~ P ( λ ) P(\lambda) P(λ),那么 X X X的分布列为:
P ( X = k ) = e − λ λ k k ! ( λ &gt; 0 ) . P(X=k)=\frac{e^{-\lambda}\lambda^k}{k!}(\lambda&gt;0). P(X=k)=k!eλλk(λ>0).

使用贝叶斯方法对 λ \lambda λ的值进行参数估计,将参数 λ \lambda λ视为一个随机变量,随机变量 λ \lambda λ的先验分布服从 G a m m a Gamma Gamma分布,其密度函数为:
π ( λ ) = β α Γ ( α ) λ α − 1 e − β λ = β α λ α − 1 e − β λ ∫ 0 + ∞ t α − 1 e − t d t ( α &gt; 0 , β &gt; 0 ) . \pi(\lambda)=\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}=\frac{\beta^\alpha\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}t^{\alpha-1}e^{-t}dt}(\alpha&gt;0,\beta&gt;0). π(λ)=Γ(α)βαλα1eβλ=0+tα1etdtβαλα1eβλ(α>0,β>0).
为了使用样本信息对参数进行估计,从总体 X X X中随机抽取 n n n个样本,记为 ( x 1 , x 2 , . . . , x n ) = x (x_1,x_2,...,x_n)=x (x1,x2,...,xn)=x, 那么可以写出似然函数:
L ( x ∣ λ ) = ∏ i = 0 n e − λ λ x i x i ! = e − n λ λ n x ‾ ∏ i = 0 n ( x i ! ) . L(x|\lambda)=\prod\limits_{i=0}^n\frac{e^{-\lambda}\lambda^{x_i}}{x_i!}=\frac{e^{-n\lambda}\lambda^{n\overline{x}}}{\prod\limits_{i=0}^n(x_i!)}. L(xλ)=i=0nxi!eλλxi=i=0n(xi!)enλλnx.
根据以上两个式子 — 先验密度函数和似然函数,可以根据贝叶斯公式得出参数 λ \lambda λ的后验概率密度:
π ( λ ∣ x ) = L ( x ∣ λ ) π ( λ ) ∫ Λ L ( x ∣ λ ) π ( λ ) d λ = e − n λ λ n x ‾ ∏ i = 0 n ( x i ! ) β α λ α − 1 e − β λ ∫ 0 + ∞ t α − 1 e − t d t ∫ 0 + ∞ e − n λ λ n x ‾ ∏ i = 0 n ( x i ! ) β α λ α − 1 e − β λ ∫ 0 + ∞ t α − 1 e − t d t d λ \pi(\lambda|x)=\frac{L(x|\lambda)\pi(\lambda)}{\int_\Lambda L(x|\lambda)\pi(\lambda)d\lambda}=\frac{\frac{e^{-n\lambda}\lambda^{n\overline{x}}}{\prod\limits_{i=0}^n(x_i!)}\frac{\beta^\alpha\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}t^{\alpha-1}e^{-t}dt}}{\int_0^{+\infty}\frac{e^{-n\lambda}\lambda^{n\overline{x}}}{\prod\limits_{i=0}^n(x_i!)}\frac{\beta^\alpha\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}t^{\alpha-1}e^{-t}dt}d\lambda} π(λx)=ΛL(xλ)π(λ)dλL(xλ)π(λ)=0+i=0n(xi!)enλλnx0+tα1etdtβαλα1eβλdλi=0n(xi!)enλλnx0+tα1etdtβαλα1eβλ                                                = λ n x ‾ + α − 1 e − ( n + β ) λ ∫ 0 + ∞ λ n x ‾ + α − 1 e − ( n + β ) λ d λ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\frac{\lambda^{n\overline{x}+\alpha-1}e^{-(n+\beta)\lambda}}{\int_0^{+\infty}\lambda^{n\overline{x}+\alpha-1}e^{-(n+\beta)\lambda}d\lambda}                                               =0+λnx+α1e(n+β)λdλλnx+α1e(n+β)λ
                ( 令 ( n + β ) λ = t )        = λ n x ‾ + α − 1 e − ( n + β ) λ ∫ 0 + ∞ 1 n + β ( t n + β ) n x ‾ + α − 1 e − t d t ~~~~~~~~~~~~~~~(令(n+\beta)\lambda=t)~~~~~~=\frac{\lambda^{n\overline{x}+\alpha-1}e^{-(n+\beta)\lambda}}{\int_0^{+\infty}\frac{1}{n+\beta}(\frac{t}{n+\beta})^{n\overline{x}+\alpha-1}e^{-t}dt}                ((n+β)λ=t)      =0+n+β1(n+βt)nx+α1etdtλnx+α1e(n+β)λ
                                                    = ( n + β ) n x ‾ + α λ n x ‾ + α − 1 e − ( n + β ) λ Γ ( n x ‾ + α ) , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(n+\beta)^{n\overline{x}+\alpha}\frac{\lambda^{n\overline{x}+\alpha-1}e^{-(n+\beta)\lambda}}{\Gamma(n\overline{x}+\alpha)},                                                    =(n+β)nx+αΓ(nx+α)λnx+α1e(n+β)λ,
λ ∣ x \lambda|x λx ~ G a ( n x ‾ + α , n + β ) Ga({n\overline{x}+\alpha},n+\beta) Ga(nx+α,n+β). 由此可直观地看出用贝叶斯原理可以将样本信息与参数的先验分布信息有效地结合起来,得出参数的后验估计。

2. 指数分布

前面指出,当随机变量 Y Y Y~ B e t a ( 1 , 1 ) Beta(1,1) Beta(1,1)时, B e t a Beta Beta分布退化为均匀分布, Y Y Y~ U ( 0 , 1 ) U(0,1) U(0,1).其实,当随机变量 Y Y Y~ G a ( 1 , β ) Ga(1,\beta) Ga(1,β)时, G a m m a Gamma Gamma分布退化为指数分布, Y Y Y ~ e x p ( β ) exp(\beta) exp(β).

当一个随机变量 X X X ~ e x p ( λ ) exp(\lambda) exp(λ)时,它的密度函数为:

f ( x ) = { λ e − λ x ,     ( x ≥ 0 ) 0 ,         ( x &lt; 0 ) . f(x)=\left\{ \begin{aligned} \lambda e^{-\lambda x},~~~(x\geq0)\\ 0,~~~~~~~(x&lt;0) \end{aligned} \right.. f(x)={λeλx,   (x0)0,       (x<0).
实际上,运用贝叶斯的思想,将参数 λ \lambda λ不看作一个固定的常数,而是一个服从某种分布的随机变量,就会发现, G m m a Gmma Gmma分布族也是指数分布中参数 λ \lambda λ的共轭先验分布族,下面给出证明:

从总体 X X X中随机抽取 n n n个样本,记为 ( x 1 , x 2 , . . . , x n ) = x (x_1,x_2,...,x_n)=x (x1,x2,...,xn)=x, 那么可以写出似然函数:
L ( x ∣ λ ) = ∏ i = 0 n λ e − λ x i = λ n e − λ n x ‾ . L(x|\lambda)=\prod\limits_{i=0}^n{\lambda e^{-\lambda{x_i}}}=\lambda^ne^{-\lambda n\overline{x}}. L(xλ)=i=0nλeλxi=λneλnx.

依旧将参数 λ \lambda λ视为一个随机变量,随机变量 λ \lambda λ的先验分布服从 G a m m a Gamma Gamma分布,其密度函数为:
π ( λ ) = β α Γ ( α ) λ α − 1 e − β λ = β α λ α − 1 e − β λ ∫ 0 + ∞ t α − 1 e − t d t    ( λ ≥ 0 ) . \pi(\lambda)=\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}=\frac{\beta^\alpha\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}t^{\alpha-1}e^{-t}dt}~~(\lambda\geq0). π(λ)=Γ(α)βαλα1eβλ=0+tα1etdtβαλα1eβλ  (λ0).
根据以上两个式子 — 先验密度函数和似然函数,可以根据贝叶斯公式得出参数 λ \lambda λ的后验概率密度:
π ( λ ∣ x ) = L ( x ∣ λ ) π ( λ ) ∫ Λ L ( x ∣ λ ) π ( λ ) d λ = λ n e − λ n x ‾ β α Γ ( α ) λ α − 1 e − β λ ∫ 0 + ∞ λ n e − λ n x ‾ β α Γ ( α ) λ α − 1 e − β λ d λ \pi(\lambda|x)=\frac{L(x|\lambda)\pi(\lambda)}{\int_\Lambda L(x|\lambda)\pi(\lambda)d\lambda}=\frac{\lambda^ne^{-\lambda n\overline{x}}\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}}{\int_0^{+\infty}\lambda^ne^{-\lambda n\overline{x}}\frac{\beta^\alpha}{\Gamma(\alpha)}\lambda^{\alpha-1}e^{-\beta\lambda}d\lambda} π(λx)=ΛL(xλ)π(λ)dλL(xλ)π(λ)=0+λneλnxΓ(α)βαλα1eβλdλλneλnxΓ(α)βαλα1eβλ
                                       = λ n + α − 1 e − ( n x ‾ + β ) λ ∫ 0 + ∞ λ n + α − 1 e − ( n x ‾ + β ) λ d λ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=\frac{\lambda^{n+\alpha-1}e^{-(n\overline{x}+\beta)\lambda}}{\int_0^{+\infty}\lambda^{n+\alpha-1}e^{-(n\overline{x}+\beta)\lambda}d\lambda}                                       =0+λn+α1e(nx+β)λdλλn+α1e(nx+β)λ
( 令 ( n x ‾ + β ) λ = t )                 = ( n x ‾ + β ) n + α λ n + α − 1 e − ( n x ‾ + β ) λ ∫ 0 + ∞ t n + α − 1 e − t d t (令(n\overline{x}+\beta)\lambda=t)~~~~~~~~~~~~~~~=(n\overline{x}+\beta)^{n+\alpha} \frac{\lambda^{n+\alpha-1}e^{-(n\overline{x}+\beta)\lambda}}{\int_0^{+\infty}t^{n+\alpha-1}e^{-t}dt} ((nx+β)λ=t)               =(nx+β)n+α0+tn+α1etdtλn+α1e(nx+β)λ
                                                = ( n x ‾ + β ) n + α λ n + α − 1 e − ( n x ‾ + β ) λ Γ ( n + α ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~=(n\overline{x}+\beta)^{n+\alpha} \frac{\lambda^{n+\alpha-1}e^{-(n\overline{x}+\beta)\lambda}}{\Gamma(n+\alpha)}                                                =(nx+β)n+αΓ(n+α)λn+α1e(nx+β)λ
λ ∣ x \lambda|x λx ~ G a ( n + α , n x ‾ + β ) Ga({n+\alpha},n\overline{x}+\beta) Ga(n+α,nx+β). 由此可直观地看出用贝叶斯原理可以将样本信息与参数的先验分布信息有效地结合起来,得出参数的后验估计。

  • 5
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值