对偶问题、KKT条件、LP中的对偶问题


这篇文章是对 pluskiKevin_Duan 的读后感。看完这两位的文章后,对线性规划对偶问题的来龙去脉有了更深的理解。

这是我CSDN上的第一篇分享,肯定不会是最后一篇,希望能激励自己好好学习,赚钱养猫 ~

1. 拉格朗日函数和对偶问题

1.1 拉格朗日函数

优化问题一般都能转化为如下的形式:
min ⁡ f ( x ) s . t . h i ( x ) ≤ 0 , i = 1 , . . . , m g i ( x ) = 0 , i = 1 , . . . , n \begin{aligned} \min \quad & f(x)\\ s.t. \quad & h_i(x)\leq0, i=1,...,m\\ & g_i(x)=0, i=1,...,n \end{aligned} mins.t.f(x)hi(x)0,i=1,...,mgi(x)=0,i=1,...,n 这里面要求 g i ( x ) g_i(x) gi(x)是仿射的,也就是形如 g i ( x ) = A x + b g_i(x)=Ax+b gi(x)=Ax+b.

那么对应的拉格朗日函数是:

L ( x , λ , v ) = f ( x ) + ∑ i = 1 m λ i h i ( x ) + ∑ i = 1 n v i g i ( x ) L(x,\lambda,v)=f(x)+\sum_{i=1}^m\lambda_ih_i(x)+\sum_{i=1}^n v_ig_i(x) L(x,λ,v)=f(x)+i=1mλihi(x)+i=1nvigi(x)

其中 λ i ≥ 0 \lambda_i\geq0 λi0.

这里面 λ i , v i \lambda_i,v_i λi,vi都是向量,它们的维度分别由 h i ( x ) , g i ( x ) h_i(x),g_i(x) hi(x),gi(x)确定,反正就是要保证矩阵相乘之后, λ i h i ( x ) , v i g i ( x ) \lambda_ih_i(x),v_ig_i(x) λihi(x),vigi(x) 都是一个数。 比方说,如果 g i ( x ) g_i(x) gi(x) x x x 映射成一个 p × 1 p×1 p×1 的向量的话, 那么 v i v_i vi 就是一个 1 × p 1×p 1×p 的向量。

可以看到拉格朗日函数把约束和目标函数融合在了一起。那为什么要引入拉格朗日函数呢? 神奇的地方就在于,从拉格朗日函数出发,我们能构造出原问题和对偶问题。

1.2 原问题

首先来看看
Z ( x ) = max ⁡ λ ≥ 0 , v L ( x , λ , v ) = max ⁡ λ ≥ 0 , v f ( x ) + ∑ i = 1 m λ i h i ( x ) + ∑ i = 1 n v i g i ( x ) \begin{aligned} Z(x)=&\max \limits_{\lambda\geq0,v}L(x,\lambda,v)\\ =& \max \limits_{\lambda\geq0,v}f(x)+\sum_{i=1}^m\lambda_ih_i(x)+\sum_{i=1}^n v_ig_i(x) \end{aligned} Z(x)==λ0,vmaxL(x,λ,v)λ0,vmaxf(x)+i=1mλihi(x)+i=1nvigi(x) 这一小节想说的事情就是: min ⁡ Z ( x ) \min Z(x) minZ(x) 的最优解 x ∗ x^* x,其实是原问题的最优解

首先,如果 x ∗ x^* x min ⁡ Z ( x ) \min Z(x) minZ(x) 的最优解,那肯定有 h i ( x ∗ ) ≤ 0 h_i(x^*)\leq0 hi(x)0 g i ( x ∗ ) = 0 g_i(x^*)=0 gi(x)=</

  • 5
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值