本篇上一篇讲的凸优化问题:凸优化问题(最简单)链接: link
一、概念介绍
KKT最优化条件是Karush(1939)以及Kuhn和Tucker(1951)先后独立发表出来的,但在Kuhn和Tucker发表之后才逐渐受到重视,因此多数情况下记载成库恩-塔克条件(Kuhn-Tucker conditions)。先介绍几个优化的概念。
1.1 优化
最优化问题,是指在一定约束条件下,求解一个目标函数的最大值(或最小值)问题。根据是否有变量的约束条件,可以将优化问题分为无约束优化问题和约束优化问题。
1.2 无约束优化问题
目标函数的可行域为全空间,对目标函数直接求导求出极值点。
1.3 约束优化问题(Constrained Optimization)
约束优化问题中变量需要满足一些等式或不等式的约束条件。约束优化问题通常使用拉格朗日乘数法来进行求解。
1.4 凸优化
非线性优化问题中,有一类比较特殊的问题是凸优化问题(Conver Programming)。在凸优化问题中,变量x的可行域为凸集,即对于集合中任意两点,他们的连线全部位于在集合内部。目标函数f也必须为凸函数,即满足

最低0.47元/天 解锁文章
7607





