文章目录
前言
无线信道的衰落是由于信号在空间传播时受到多种物理现象的影响,如多径效应导致信号以不同的相位到达接收器,衍射使信号沿非直线路径传播,而反射和散射在物体表面或不规则地形处产生多个传播路径,这些因素都可能导致信号衰落和失真。同时,天气条件如雨、雪和雾,以及其他电磁干扰,也会进一步影响信号的传播质量。这些复杂的物理和环境因素共同作用,导致无线信道的衰落现象。为了应对这些挑战,无线通信系统采用了多种技术和算法,如自适应调制、误差控制编码和多天线技术,以提高信道的可靠性和通信质量。
一、大尺度衰落、小尺度衰落
- 大尺度衰落: 由信号的路径损耗(关于距离的函数)和大的障碍物(如建筑物、中间地形和植物)形成的阴影所引起的。阴影衰落是一种慢衰落过程,描述接收机和发射机之间的中等路径损耗的波动特性。换句话说,大尺度衰落的特性由平均路径损耗和阴影衰落来描述。
- 小尺度衰落: 小尺度衰落是由于信号在短距离内由于多径效应引起的干扰或衰减。它主要受到信号的相位、频率和强度的微小变化的影响,这些变化可能是由于信号与环境中的小物体(如树木或楼房)的交互引起的。这种衰落通常在一个小的时间和空间范围内变化,对无线通信系统的性能影响较大。根据多径时延的相对扩展,用信道的频率选择性(如频率选择的或频率平坦的)来描述小尺度衰落的特性。此外,根据信道在时间上的波动(用多普勒扩展描述),短期衰落可以分为快衰落和慢衰落。
F r i i s Friis Friis公式给出了接收功率 P r ( d ) P_r(d) Pr(d) 和发射功率 P t P_t Pt 之间的关系: P r ( d ) = P t G t G r λ 2 ( 4 π ) 2 d 2 L P_r(d) = \frac{P_t G_t G_r \lambda^2}{(4 \pi)^2 d^2L} Pr(d)=(4π)2d2LPtGtGrλ2 其中: P r ( d ) P_r(d) Pr(d) 是接收功率(W); P t P_t Pt 是发射功率(W); G t G_t Gt 和 G r G_r Gr 分别是发射和接收天线增益; λ \lambda λ 是发射波长(m); d d d 是发射机和接收机之间的距离(m);L为与传输环境无关的系统损耗系数,表示实际硬件系统中的总体衰减或损耗,包括传输线、滤波器和天线,如果没有损耗,则 L = 1 L=1 L=1,否则 L > 1 L>1 L>1。
该公式表明,信号的接收功率与距离的平方成反比,且与波长、天线增益等因素相关。
对
F
r
i
i
s
Friis
Friis公式取对数:
P
L
F
(
d
)
[
d
B
]
=
10
log
10
(
P
t
P
r
)
=
−
10
log
10
(
G
t
G
r
λ
2
(
4
π
)
2
d
2
)
PL_F(d) [dB] = 10 \log_{10} \left( \frac{P_t}{P_r} \right) = -10 \log_{10} \left( \frac{G_t G_r \lambda^2}{(4 \pi)^2 d^2} \right)
PLF(d)[dB]=10log10(PrPt)=−10log10((4π)2d2GtGrλ2)
在没有天线增益时
(
G
t
=
G
r
=
1
)
(G_t=G_r=1)
(Gt=Gr=1),公式简化为:
P
L
F
(
d
)
[
d
B
]
=
20
log
10
(
4
π
d
λ
)
PL_F(d) [dB] = 20 \log_{10} \left( \frac{4 \pi d}{\lambda} \right)
PLF(d)[dB]=20log10(λ4πd)
引入随着环境而改变的路径损耗指数 n n n,可以修正自由空间路径损耗模型为: P L L D ( d ) [ d B ] = P L F ( d 0 ) + 10 n log 10 ( d d 0 ) PL_{LD}(d)[dB] = PL_F(d_0) + 10n \log_{10} \left( \frac{d}{d_0} \right) PLLD(d)[dB]=PLF(d0)+10nlog10(d0d) 其中: P L F ( d 0 ) PL_F(d_0) PLF(d0) 是参考距离 d 0 d_0 d0 处的路径损耗; n n n 是路径损耗指数,通常取值在 2 到 6 之间,具体值与传播环境(如城市、郊区等)相关, n = 2 n=2 n=2为自由空间,障碍物增多, n n n会增大。
d 0 d_0 d0 的选择通常基于通信环境。例如,大覆盖范围的蜂窝系统(半径大于10km的蜂窝系统)使用 1km 作为参考距离,而小范围区域(小区半径为1km的宏蜂窝系统或具有极小半径的微蜂窝系统)则分别选择 100m 或 1m 作为参考距离。
上述路径损耗模型未考虑特殊情况,在更真实环境中对数正态阴影模型更实用。定义 X σ X_{\sigma} Xσ 为均值为0、标准差为 σ \sigma σ 的高斯随机变量,对数正态阴影衰落模型公式为: PL ( d ) [ dB ] = PL ‾ ( d ) + X σ = PL F ( d 0 ) + 10 n log 10 ( d d 0 ) + X σ \text{PL}(d)[\text{dB}]=\overline{\text{PL}}(d)+X_{\sigma}=\text{PL}_{\text{F}}(d_{0}) + 10n\log_{10}(\frac{d}{d_{0}})+X_{\sigma} PL(d)[dB]=PL(d)+Xσ=PLF(d0)+10nlog10(d0d)+Xσ 说明该模型允许相同距离 d d d 处接收机有不同路径损耗,且随随机阴影变量 X σ X_{\sigma} Xσ 变化。
上述是一般路径损耗模型,除此之外,还有Okumura/Hata模型、IEEE 802.16d模型等。
二、远近效应、多普勒效应、阴影效应和多径效应
基于电磁波在无线信道中的不同传播机制,无线信道对信号传输产生四种主要影响:远近效应、多普勒效应、阴影效应和多径效应。
-
远近效应:随着发射机与接收机之间距离的增加,接收信号的功率逐渐减小。由于接收机位置的随机性,信号在到达接收机时的强度会有所不同,导致“以强压弱”现象,从而可能使弱信号的通信中断。
-
多普勒效应:当用户高速移动时,接收信号会出现频率偏移。这种频率偏移可能导致接收信号的频率超出预定范围,对其他频段的信号产生干扰。
-
阴影效应:在信号传播过程中,遇到建筑物或其他物体的阻挡会形成阴影区域,导致信号接收功率在某些区域随机衰减,产生半盲区。
-
多径效应:由于信道中存在反射和散射物体,导致同一信号在接收端出现多个不同路径的到达,这些路径上的信号在时、频、强度上都有所不同。接收到的信号是所有这些信号的叠加,可能导致信号失真。
在宽带无线通信系统中,这些影响因素变得更加显著,特别是多径效应。宽带系统的高传输速率和宽带宽使得信道特性变得更加复杂。从时域上看,不同路径的信号可能在接收端引起符号间串扰;从频域上看,信道的频率响应在系统的带宽范围内会发生显著波动。这些特性增加了信号处理和调制设计的复杂性。
三、多径时延扩展->时间色散->频率选择性衰落(主要由信号带宽决定)
原理:接收机所捕获的信号是通过多种路径,包括直射、反射和折射等方式到达的。由于电波在这些路径上的传播距离各不相同,导致各路径上的信号到达时间存在差异,从而引发多径时延扩展,也称为时间弥散性。由于这些路径的长度和特性不同,到达接收机的信号具有不同的相位。在接收端,这些不同相位的信号会相互叠加。当信号同相叠加时,会导致信号幅度增强;反之,当信号反相叠加时,会导致信号幅度减弱。这种幅度的急剧变化引发了多径衰落现象。
令 B s B_{\text{s}} Bs和 T T T 分别表示发射信号的带宽和符号周期, B c B_{\text{c}} Bc 和 σ τ \sigma_{\tau} στ分别表示相干带宽和RMS时延扩展。
(1) B s > B c B_{\text{s}} > B_{\text{c}} Bs>Bc 和 T < σ τ T < \sigma_{\tau} T<στ,会导致频率选择性衰落的现象:
-
时域分析:由于信道的均方根时延扩展大于信号的符号周期,导致前一个符号的结束与后一个符号的开始存在重叠。这种重叠造成了符号间的干扰,称为符号间干扰(ISI)。
-
频率域分析:由于信号的频谱宽度超过信道的相干带宽,当信号通过信道时,高频部分将被截断,从而引发频率失真。
-
即使信道衰落依赖于调制方案,但只要 σ τ > 0.1 T \sigma_{\tau}>0.1T στ>0.1T,就将其称为频率选择性衰落。
(2) B s ≪ B c B_{\text{s}} \ll B_{\text{c}} Bs≪Bc 和 T ≫ σ τ T \gg \sigma_{\tau} T≫στ,则信号在传输过程中将呈现平坦的频率响应。
-
信道冲激响应 h ( t ) h(t) h(t):
信道冲激响应描述了信号在多径信道中的时域行为。它是各个路径增益和时延的叠加: h ( t ) = ∑ i = 1 N α i δ ( t − τ i ) h(t) = \sum_{i=1}^{N} \alpha_i \delta(t - \tau_i) h(t)=i=1∑Nαiδ(t−τi) 在这里, α i \alpha_i αi 是第 i i i条路径的复数增益,包括幅度和相位; τ i \tau_i τi 是第 i i i条路径的时延; δ ( t ) \delta(t) δ(t) 是单位冲激函数,表示在 t = τ i t = \tau_i t=τi时刻有一个冲激。
-
路径功率 p i p_i pi:
路径功率描述了每条路径的能量或功率。它是增益的平方的期望值: p i = E [ ∣ α i ∣ 2 ] p_i = E[\left| \alpha_i \right|^2] pi=E[∣αi∣2]这里, ∣ α i ∣ \left| \alpha_i \right| ∣αi∣是增益的幅度, E [ ⋅ ] E[\cdot] E[⋅]表示期望值。
-
多径模型的均方根时延扩展 σ τ \sigma_{\tau} στ:
均方根(Root Mean Spread, RMS)时延扩展描述了多径信道的时延分散性: σ τ = τ 2 ˉ − τ ˉ 2 \sigma_{\tau} = \sqrt{\bar{\tau^2} - \bar{\tau}^2} στ=τ2ˉ−τˉ2其中, τ ˉ \bar{\tau} τˉ和 τ 2 ˉ \bar{\tau^2} τ2ˉ的计算公式分别为: τ ˉ = E [ τ ] = ∑ i p i ∑ k p k τ i \bar{\tau} = E[\tau] = \sum_{i} \frac{p_{i}}{\sum_{k} p_{k}} \tau_{i} τˉ=E[τ]=i∑∑kpkpiτi τ 2 ˉ = E [ τ 2 ] = ∑ i p i ∑ k p k τ i 2 \bar{\tau^2} = E[\tau^2] = \sum_{i} \frac{p_{i}}{\sum_{k} p_{k}} \tau_{i}^2 τ2ˉ=E[τ2]=i∑∑kpkpiτi2
-
相干带宽 B c B_{c} Bc:
相干带宽是一个重要的信道参数,它描述了信号在不引起严重失真的前提下可以传输的最大带宽。相干带宽与均方根时延扩展之间有一个反比关系: B c ≈ 1 σ τ B_{\text{c}} \approx \frac{1}{\sigma_{\tau}} Bc≈στ1该式会随相干带宽的定义不同而不同。例如,当相干带宽定义为相关函数大于等于0.9所对应的带宽时,相干带宽和RMS时延扩展的关系为: B c ≈ 1 50 σ τ B_{\text{c}} \approx \frac{1}{50\sigma_{\tau}} Bc≈50στ1当相干带宽定义为相关函数大于等于0.5所对应的带宽时,它们的关系为: B c ≈ 1 5 σ τ B_{\text{c}} \approx \frac{1}{5\sigma_{\tau}} Bc≈5στ1
• 当信号的带宽小于信道的相干带宽时,信道表现为平坦衰落特性,例如瑞利平坦衰落;
• 当信号的带宽大于信道的相干带宽时,信道呈现频率选择性衰落特性,导致符号间干扰(ISI),从而引发接收信号的失真。针对此问题的解决方法包括信道均衡、OFDM技术等。
四、多普勒扩展->频率色散->时间选择性衰落
原理:在移动通信中,移动台的运动会引起接收信号的频率变化,这种现象被称为多普勒效应。以可见光为例,假设一个发光物体以固定频率发出光波。当该物体开始向接收者运动时,由于光波的传播速度不变,第二个波峰达到接收者时,物体已经向接收者靠近,导致第二个波峰到达的时间早于第一个波峰,从而缩短了两个波峰到达接收者的时间间隔。因此,接收到的频率会增加。相反,当物体远离接收者时,接收到的频率会减小。这一现象即为多普勒效应的基本原理。
-
多普勒频偏的计算公式:
考虑物体与接收者之间的夹角 θ \theta θ,多普勒频偏 f d f_d fd可以通过以下公式计算: f d = v cos ( θ ) c f c f_d = \frac{v \cos(\theta)}{c} f_c fd=cvcos(θ)fc其中, v v v是物体相对接收者的速度(正值表示物体向接收者运动,负值表示物体远离接收者)。 c c c是光在真空中的速度。 f c f_c fc是物体发射的光波频率。
-
相干时间的计算公式:
令 f m f_{\text{m}} fm 为最大的多普勒频移, B d B_{\text{d}} Bd 为多普勒频谱带宽,满足 B d = 2 f m B_{\text{d}} = 2f_{\text{m}} Bd=2fm 。总的来说,相干时间(记为 T c T_{\text{c}} Tc )与多普勒扩展成反比,即: T c ≈ 1 B d T_{\text{c}} \approx \frac{1}{B_{\text{d}}} Tc≈Bd1
该式是在瑞利衰落信号变化十分缓慢的假设条件下得到的,考虑信号变化非常迅速的条件,则: T c ≈ 9 16 π f m T_{\text{c}} \approx \frac{9}{16\pi f_{\text{m}}} Tc≈16πfm9
最常见的相干时间定义是由上面两个公式几何平均给出的: T c = 9 16 π f m 2 = 0.423 f m T_{\text{c}} = \sqrt{\frac{9}{16\pi f_{\text{m}}^{2}}} = \frac{0.423}{f_{\text{m}}} Tc=16πfm29=fm0.423
• 当信号的符号周期小于信道的相干时间时,导致信道呈现慢衰落特性,即信道的变化速度低于基带信号的变化速度;
• 当信号的符号周期大于信道的相干时间时,导致信道呈现快衰落特性,即信道的变化速度高于基带信号的变化速度。
五、衰落信道的形成
总的来说,无论室内或者室外信道,任何无线信道的传播环境都服从LOS或NLOS。LOS 环境中接收信号的PDF服从莱斯分布,而NLOS环境中接收信号的PDF服从瑞利分布。
%% 产生瑞利衰落和莱斯衰落信道
% MIMO-OFDM Wireless Communications with MATLAB㈢
clear, clf
N=200000; level=30; K_dB=[-40 15];
Rayleigh_ch=zeros(1,N); Rician_ch=zeros(2,N);
color=['k']; line=['-']; marker=['s','o','^'];
% 瑞利衰落模型
Rayleigh_ch=Ray_model(N);
[temp,x]=hist(abs(Rayleigh_ch(1,:)),level);
plot(x,temp,['k-' marker(1)]), hold on
% 莱斯衰落模型
for i=1:length(K_dB)
Rician_ch(i,:)=Ric_model(K_dB(i),N);
[temp x]=hist(abs(Rician_ch(i,:)),level);
plot(x,temp,['k-' marker(i+1)]);
end
xlabel('x'), ylabel('Occurance')
grid on
legend('Rayleigh','Rician, K=-40dB','Rician, K=15dB')
%% 信道模型,K_dB:K因子,L:信道径数,H:信道向量
function H=Ray_model(L)
H = (randn(1,L)+1i*randn(1,L))/sqrt(2);
end
function H=Ric_model(K_dB,L)
K=10^(K_dB/10);
H = sqrt(K/(K+1)) + sqrt(1/(K+1))*Ray_model(L);
end
六、MATLAB的comm.RayleighChannel()函数
comm.RayleighChannel() 是 MATLAB 中 Communications Toolbox 提供的一个 Rayleigh 多径衰落信道模型。它用于对无线通信系统中的 平坦衰落 或 频率选择性衰落 进行建模。
一键直达comm.RayleighChannel()函数文档
使用方法:
rayleighchan = comm.RayleighChannel
rayleighchan = comm.RayleighChannel(Name=Value)
ChannelOutput = rayleighchan(ChannelInput)
[ChannelOutput, PathGains] = rayleighchan(ChannelInput)
主要属性:
rayleighchan = comm.RayleighChannel( ...
'SampleRate', 10e3, ...
'PathDelays', [0 1.5e-4], ...
'AveragePathGains', [2 3], ...
'NormalizePathGains', true, ...
'MaximumDopplerShift', 30, ...
'DopplerSpectrum', {doppler('Gaussian', 0.6), doppler('Flat')}, ...
'RandomStream', 'mt19937ar with seed', ...
'Seed', 22, ...
'PathGainsOutputPort', true);
SampleRate:信道的采样率,单位为 Hz(此处为 10 kHz)。
PathDelays:每条路径的传播延迟,单位为秒(此处有两个路径,延迟分别为 0 和 150 微秒)。
AveragePathGains:每条路径的平均增益,单位为 dB(此处路径增益分别为 2 dB 和 3 dB)
NormalizePathGains:是否归一化路径增益,使总增益为 0 dB(此处为 true,表示归一化)。
MaximumDopplerShift:最大多普勒频移,单位为 Hz(此处为 30 Hz)。
DopplerSpectrum:多普勒频谱模型,决定信号的频率偏移特性(此处为高斯和平坦频谱)。
RandomStream:随机数生成器的类型和种子方法(此处为 Mersenne Twister 算法)。
Seed:随机数生成器的种子值(此处为 22)。
PathGainsOutputPort:是否输出路径增益(此处为 true,表示输出路径增益)。