【文献阅读:信道估计】Deep learning-based channel estimation

本文介绍了一个使用深度学习的OFDM信道估计框架ChannelNet,通过SRCNN和DnCNN技术进行两阶段处理:首先提升信道网格的分辨率,然后去除非理想效应。实验结果显示,ChannelNet在不同SNR条件下表现出色,尤其在低至中等信噪比下接近或优于现有先进算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文献地址:https://ieeexplore.ieee.org/document/8640815
文献Github相关代码:
pytorch版本:https://github.com/rohsequ/Deep-Learning-Model-for-Channel-Estimation-PyTorch
tensorflow版本:https://github.com/MehranSoltani94/ChannelNet


一、解决的问题

提出了一个基于DL的OFDM系统信道估计框架ChannelNet。,信道响应的时频网格被建模为仅在导频位置已知的二维图像。具有多个导频的信道网格被视为低分辨率 (LR) 图像,估计信道被视为高分辨率 (HR) 影像。提出了一种两阶段方法来估计信道网格。首先,使用图像超分辨率(SR)算法来增强LR输入的分辨率。然后,利用图像恢复(IR)方法去除噪声效应。对于 SR 和 IR 网络,分别使用 SRCNN 和 DnCNN。
SRCNN:https://ieeexplore.ieee.org/document/7866198
DnCNN:https://ieeexplore.ieee.org/document/7839189

二、解决的思路和方法

1. 思路

对于SR和IR网络,使用了基于CNN的算法,超分辨率神经网络(Super-resolution convolutional neural network,SRCNN)和前馈去噪神经网络(DnCNN)。

  • SRCNN:端到端映射LR/HR图像。
  • DnCNN:前馈去噪,利用残差学习和批处理归一化来加速训练过程。

ChannelNet结构:
ChannelNet结构
SRCNN首先使用插值方案找到高分辨率图像的近似值,再使用三层卷积网络来提高估计精度。
SRCNN网络结构
DnCNN是一个基于残差学习的网络,由20个卷积层组成。
DnCNN网络结构
训练公式:这里 f S f_S fS f R f_R fR分别是SR和IR函数。
训练公式

2. 方法

  • 模拟器:维也纳LTE- a模拟器。
  • OFDM符号:LTE标准的ND=14时隙,NS=72子载波采样,实/虚二维图像。
  • 仿真平台:Keras和Tensorflow使用GPU后端。
  • 信道模型:使用载波频率为2.1 GHz、带宽为1.6 MHz、UE(用户设备)速度为50 km/h的VehA和SUI5(一种时延扩展较长的信道模型)无线信道模型。
  • 性能比较:将本文方法的信道估计精度与理想MMSE、估计MMSE和理想ALMMSE三种最先进的算法进行了比较。
  • 导频结构:晶状导频。
  • 训练参数:训练速率设置为 0.001,批处理大小为 128,最多迭代 500 次。训练集、测试集和验证集分别由 32000、4000 和 4000 个通道组成。

三、解决的效果和结论

(1)基于信噪比的VehA信道模型的信道估计MSE:Low-SNR(12dB),High-SNR(22dB)。
结果1
结果表明,对于低 SNR 值,在 12dB 的 SNR 值(用深度低 SNR 表示)下训练的 ChannelNet 具有与理想 MMSE 相当的性能,并且比理想的 ALMMSE 和估计的 MMSE 具有更好的性能。此外,可以观察到,在大约中等SNR值之后,在22dB的SNR值(用深度高SNR表示)下训练的网络的性能将优于深度低SNR。
采用阈值法,信噪比较低时,采用Low-SNR网络估计信道,超过阈值后使用High-SNR网络估计信道。可以看出,对于高于23 dB的SNR值,深度高信噪比的性能将再次失效,需要训练另一个网络;但只要信噪比低于20 dB,两个生成的网络就足够了。

(2)基于信噪比的SUI5信道模型的信道估计MSE:
结果2
一般来说,由于SUI5信道的复杂性较高,与VehA模型相比,所有方案的性能都较低。在SNR值为5dB后,可以观察到ALMMSE和估计MMSE等方案显着退化,而所提出的深度模型仍然可以发现潜在的统计数据并得到可接受的MSE。正如预期的那样,Ideal-MMSE具有最佳性能,但在实际场景中无法实现,因为它需要充分了解正确的通道统计信息。

(3)基于导频数的Veh5信道模型在20dB下进行信道估计的均方误差:
结果3

在该信噪比特定值下训练的ChannelNet优于Estimated MMSE和Ideal ALMMSE方法,与Ideal MMSE方法相当。

(4)存在的不足:必须针对每个信噪比值重新训练网络。

这是一篇论文,其中使用了PARAFAC-based方法进行智能反射面辅助的MIMO信道估计。以下是代码复现的基本步骤: 1. 生成仿真数据集:通过MATLAB中的函数生成MIMO信道仿真数据集,包括发送端、接收端、智能反射面的位置坐标、反射系数等信息。可以参考MATLAB中的`comm.MIMOChannel`和`phased.ConformalArray`等函数。 2. 实现PARAFAC-based信道估计算法:根据论文中的算法原理,实现PARAFAC-based信道估计算法,包括数据预处理、TF分解、信道估计等步骤。可以使用MATLAB中的`parafac`函数进行TF分解,使用最小二乘法或迭代算法进行信道估计。 3. 评估算法性能:使用生成的仿真数据集,评估PARAFAC-based信道估计算法的性能指标,包括均方误差(MSE)、误差率等。可以使用MATLAB中的`sim`函数进行性能评估。 以下是参考代码实现: ```matlab % 生成仿真数据集 Nt = 4; Nr = 4; % 发送端和接收端天线数 Np = 16; % 智能反射面元素数 d = 0.5; % 智能反射面元素间距 fc = 28e9; % 载波频率 lambda = physconst('LightSpeed')/fc; % 波长 txPos = [0 0 0]; % 发送端位置 rxPos = [1 1 0]; % 接收端位置 irsPos = [0.5 0.5 1]; % 智能反射面位置 txArray = phased.URA(Nt,[0.5 0.5], 'ElementSpacing', lambda/2); % 发送端天线阵列 rxArray = phased.URA(Nr,[0.5 0.5], 'ElementSpacing', lambda/2); % 接收端天线阵列 irsArray = phased.ConformalArray('ElementPosition', [0 0 0; repmat([d 0 0], Np-1, 1)], ... 'ElementNormal', [0 0 1; repmat([0 0 1], Np-1, 1)], 'Element', phased.IsotropicAntennaElement('FrequencyRange', [20e9 40e9])); % 智能反射面天线阵列 channel = comm.MIMOChannel('SampleRate', 1e6, 'PathDelays', [0 1e-6 2e-6], 'AveragePathGains', [0 -2 -4], ... 'TransmitAntennaArray', txArray, 'ReceiveAntennaArray', rxArray, 'PathGainsOutputPort', true); % MIMO信道模型 [txSig, txInfo] = helperGenData(); % 生成发送信号 rxSig = channel(txSig); % 接收信号 irsCoef = ones(Np, 1); % 智能反射面反射系数 % PARAFAC-based信道估计算法 X = reshape(rxSig, Nr, Nt, []); % 数据预处理 [U, ~, ~] = parafac(X, 1); % TF分解 H = U{3}; % 信道估计 % 评估算法性能 MSE = mean(abs(H-channel.PathGains).^2); BER = helperComputeBER(H, channel.PathGains); ``` 其中,`helperGenData`和`helperComputeBER`分别为生成发送信号和计算误码率的辅助函数,需要根据具体需求自行实现。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值