文献地址:https://ieeexplore.ieee.org/document/8640815
文献Github相关代码:
pytorch版本:https://github.com/rohsequ/Deep-Learning-Model-for-Channel-Estimation-PyTorch
tensorflow版本:https://github.com/MehranSoltani94/ChannelNet
一、解决的问题
提出了一个基于DL的OFDM系统信道估计框架ChannelNet。,信道响应的时频网格被建模为仅在导频位置已知的二维图像。具有多个导频的信道网格被视为低分辨率 (LR) 图像,估计信道被视为高分辨率 (HR) 影像。提出了一种两阶段方法来估计信道网格。首先,使用图像超分辨率(SR)算法来增强LR输入的分辨率。然后,利用图像恢复(IR)方法去除噪声效应。对于 SR 和 IR 网络,分别使用 SRCNN 和 DnCNN。
SRCNN:https://ieeexplore.ieee.org/document/7866198
DnCNN:https://ieeexplore.ieee.org/document/7839189
二、解决的思路和方法
1. 思路
对于SR和IR网络,使用了基于CNN的算法,超分辨率神经网络(Super-resolution convolutional neural network,SRCNN)和前馈去噪神经网络(DnCNN)。
- SRCNN:端到端映射LR/HR图像。
- DnCNN:前馈去噪,利用残差学习和批处理归一化来加速训练过程。
ChannelNet结构:
SRCNN首先使用插值方案找到高分辨率图像的近似值,再使用三层卷积网络来提高估计精度。
DnCNN是一个基于残差学习的网络,由20个卷积层组成。
训练公式:这里
f
S
f_S
fS和
f
R
f_R
fR分别是SR和IR函数。
2. 方法
- 模拟器:维也纳LTE- a模拟器。
- OFDM符号:LTE标准的ND=14时隙,NS=72子载波采样,实/虚二维图像。
- 仿真平台:Keras和Tensorflow使用GPU后端。
- 信道模型:使用载波频率为2.1 GHz、带宽为1.6 MHz、UE(用户设备)速度为50 km/h的VehA和SUI5(一种时延扩展较长的信道模型)无线信道模型。
- 性能比较:将本文方法的信道估计精度与理想MMSE、估计MMSE和理想ALMMSE三种最先进的算法进行了比较。
- 导频结构:晶状导频。
- 训练参数:训练速率设置为 0.001,批处理大小为 128,最多迭代 500 次。训练集、测试集和验证集分别由 32000、4000 和 4000 个通道组成。
三、解决的效果和结论
(1)基于信噪比的VehA信道模型的信道估计MSE:Low-SNR(12dB),High-SNR(22dB)。
结果表明,对于低 SNR 值,在 12dB 的 SNR 值(用深度低 SNR 表示)下训练的 ChannelNet 具有与理想 MMSE 相当的性能,并且比理想的 ALMMSE 和估计的 MMSE 具有更好的性能。此外,可以观察到,在大约中等SNR值之后,在22dB的SNR值(用深度高SNR表示)下训练的网络的性能将优于深度低SNR。
采用阈值法,信噪比较低时,采用Low-SNR网络估计信道,超过阈值后使用High-SNR网络估计信道。可以看出,对于高于23 dB的SNR值,深度高信噪比的性能将再次失效,需要训练另一个网络;但只要信噪比低于20 dB,两个生成的网络就足够了。
(2)基于信噪比的SUI5信道模型的信道估计MSE:
一般来说,由于SUI5信道的复杂性较高,与VehA模型相比,所有方案的性能都较低。在SNR值为5dB后,可以观察到ALMMSE和估计MMSE等方案显着退化,而所提出的深度模型仍然可以发现潜在的统计数据并得到可接受的MSE。正如预期的那样,Ideal-MMSE具有最佳性能,但在实际场景中无法实现,因为它需要充分了解正确的通道统计信息。
(3)基于导频数的Veh5信道模型在20dB下进行信道估计的均方误差:
在该信噪比特定值下训练的ChannelNet优于Estimated MMSE和Ideal ALMMSE方法,与Ideal MMSE方法相当。
(4)存在的不足:必须针对每个信噪比值重新训练网络。