算法第二十九天-最长公共子序列

本文详细阐述了如何通过动态规划算法求解两个字符串的最长公共子序列问题,包括状态定义、状态转移方程、初始化步骤以及代码实现。同时讨论了时间复杂度和空间复杂度分析。
摘要由CSDN通过智能技术生成

最长公共子序列

题目要求

在这里插入图片描述

解题思路

求这两个数组或者字符串的最长公共子序列问题,肯定要用到动态规划。

  • 首先区分两个概念:子序列可以是不连续的;子数组(子字符串)是需要连续的;
  • 另外,动态规划也是需要套路的:单个数组或者字符串要用动态规划时,可以把动态规划dp[i]定义为num[0:i]中想要求的结果;当两个数组或者字符串要用动态规划时,可以把动态规划定义成二维的dp[i][j],其含义是在A[0:i]B[0:j]之间匹配得到的想要的结果。

1.状态定义

比如对于本题而言,可以定义dp[i][j]表示text1[0:i-1]text2[0:j-1]的最长公共子序列。
之所以dp[i][j]的定义不是text1[0:i]text2[0:j],是为了方便当i=0或者j=0的时候,dp[i][j]表示的为空字符串和另外一个字符串的匹配,这样子dp[i][j]可以初始化为0.

2.状态转移方程

知道状态定义之后,我们开始写状态转移方程。

  • text1[i-1]==text2[j-1]时,说明两个字符串的最后一位不相等,那么此时的状态dp[i][j]应该是dp[i-1][j]dp[i][j-1]的最大值。举个例子,比如对于acebc而言,它们的最长公共子序列的长度等于①aceb的最长公共子序列长度0与②acbc的最长公共子序列长度1的最大值,即1.
    综上,状态转移方程为:
  • dp[i][j]=dp[i-1][j-1]+1,当text1[i-1]==text[j-1];
  • dp[i][j]=max(dp[i-1][j],dp[i][j-1]),当text1[i-1]!=text2[j-1]

3.状态的初始化

初始化就是要看当i=0与j=0时,dp[i][j]应该取值为多少;

  • i=0时,dp[0][j]表示的时text1中取空字符串跟text2的最长公共子序列,结果肯定为0;
  • j=0时,dp[i][0]表示的是text2中取空字符串跟text1的最长公共子序列,结果肯定为0
    综上,当i=0或者j=0时,dp[i][j]初始化为0

4.遍历方向与范围

由于dp[i][j]依赖于dp[i-1][j-1]dp[i-1][j]dp[i][j-1],所以i和j的遍历顺序肯定是从小到大的。
另外,由于当i和j取值为0的时候,dp[i][j]=0,而dp数组本身初始化就是为0,所以,直接让i和j从1开始遍历。遍历的结束应该是字符串的长度为len(text1)和len(text2)

5.最终返回结果

由于dp[i][j]的含义是text1[0:i-1]text2[0:j-1]的最长公共子序列。所以需要返回的结果是i=len(text1)并且j=len(text2)时的dp[len(text1)][len(text2)]

代码

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        M=len(text1)
        N=len(text2)
        dp=[[0]*(N+1)  for _ in range(M+1)]
        for i in range(1,M+1):
            for j in range(1,N+1):
                if text1[i-1]==text2[j-1]:
                    dp[i][j]=dp[i-1][j-1]+1
                else:
                    dp[i][j]=max(dp[i-1][j],dp[i][j-1])
        return dp[M][N]

复杂度分析

时间复杂度: O ( M N ) O(MN) O(MN)
空间复杂度: O ( M N ) O(MN) O(MN)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

alstonlou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值