Eviews如何做VAR

### 如何在EViews中进行VAR模型的估计和分析 #### 创建并加载工作文件 为了开始构建VAR模型,需先创建一个新的EViews工作文件或将已有数据导入其中。确保所使用的数据集适合用于时间序列分析。 #### 数据预处理与平稳性测试 在正式建模之前,应当对各变量的时间序列特性有所了解,特别是要确认这些序列是否具有趋势成分以及它们之间是否存在长期均衡关系——这通常通过ADF单位根检验来完成[^3]。 #### 确定最优滞后长度 选择合适的滞后阶数对于获得良好的预测性能至关重要。一般而言,可以通过比较不同滞后期下的信息准则(如AIC、SC),选取使这两个指标达到最小值对应的滞后阶数作为最终的选择依据。值得注意的是,在某些情况下即使某个特定的滞后阶数使得上述两个统计量取极小值,但如果此时产生的VAR模型并不满足稳定性条件,则仍需考虑其他可能更优的选择[^4]。 #### 构造VAR模型 一旦决定了最佳滞后阶数之后就可以着手建立VAR模型了。具体来说就是在EViews软件里依次点击`Quick -> Estimate VAR...`菜单项,并按照提示输入相应的选项设置,比如指定内生变量列表及其最大滞后次数等参数配置信息[^1]。 #### 模型诊断检查 成功拟合好VAR模型以后还需要进一步对其进行评估以验证其合理性。一方面可通过观察特征多项式的逆根分布情况来判断系统的动态行为模式;另一方面则借助残差相关图和其他辅助工具来进行更为细致深入地考察[^2]。 #### 动态模拟与政策评价 当确信所得到的结果可靠有效时便可以利用该模型开展各种形式的研究活动了。例如绘制脉冲响应曲线可以帮助理解某一冲击事件发生后各个经济变量随时间变化的趋势特点;而方差分解技术则是用来量化各类随机扰动因素各自在整个波动过程中扮演的角色大小及重要程度。 ```python # Python代码仅作示意用途,实际操作应在EViews环境中按指引逐步实施 import eviews as evw # 假设存在这样的库接口供调用 workfile = evw.WorkFile() # 初始化新的工作区实例对象 data_series = workfile.load_data('path_to_your_dataset') # 加载外部CSV/Excel表格等形式的数据源文件至内存缓冲区内备用 adf_test_results = data_series.unit_root_tests(method='ADF') # 执行增广迪基-福勒(ADF)单位根检测过程获取p-value临界概率数值以便后续决策参考之用 optimal_lag_length = select_best_lags(data_series, criteria=['aic', 'sc']) # 自动筛选出令Akaike Information Criterion (AIC) 和 Bayesian Information Criterion (BIC)/Schwarz criterion(SC) 达到局部最低水平的最佳延迟周期数目k* var_model = estimate_var(data_series, lags=optimal_lag_length) # 正式训练多维向量自回归(VAR)计量经济学理论框架体系结构体model_fit check_stability(var_model.roots()) # 测试已学习好的VAR(p*)表达式内部系数矩阵谱半径ρ(A)<1从而保证整体系统渐近收敛性质成立与否的状态flag impulse_response_analysis(var_model) # 绘制受控实验条件下受到一次性短暂干扰刺激作用力影响下目标研究对象y(t+h|t)在未来一段时间内的路径轨迹演化规律图形展示fig_imp_resp_func forecast_error_variance_decomposition(var_model) # 计算误差平方和占总变异比例分配份额百分比饼状图表呈现pie_chart_err_var_dec ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值