NLP
文章平均质量分 83
爱嘤嘤的小猪仔
这个作者很懒,什么都没留下…
展开
-
GLM(General Language Model)代码分析
GLM: General Language Model Pretraining with Autoregressive Blank Infilling代码分析原创 2022-07-15 15:14:20 · 2552 阅读 · 0 评论 -
GPT Understands, Too论文笔记
GPT使用传统的fine-tuning无法在自然语言理解(Natural Language Understanding, NLU)任务上取得良好的效果。本文提出了一种新方法P-tuning(采用了可学习的连续prompt embedding),可以使得GPT的性能优于同等规模的BERT。同时,我们发现P-tuning也提升了BERT在小样本以及监督学习环境下的性能并且极大程度上降低了对prompt工程的需要。 根据训练的目标,预训练语言模型主要可以被分为三类:针对语言生成任务的单向语言模型,如GPT;原创 2022-06-17 11:30:12 · 535 阅读 · 1 评论 -
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks论文笔记
将prompt tuning引入到NLU(Natural Language Understanding)中,提出了P-Tuning v2原创 2022-06-02 16:26:27 · 570 阅读 · 0 评论 -
All NLP Tasks Are Generation Tasks: A General Pretraining Framework论文笔记
论文链接:All NLP Tasks Are Generation Tasks: A General Pretraining Framework代码链接:https://github.com/THUDM/GLM论文的主要贡献1)该方法(GLM)可以在分类、无条件生成和条件生成三种任务上,仅通过预训练,就可以获得很好的效果。2)通过使用预训练——微调一致性的方法,在分类任务上可以获得比BERT类模型更好的效果。3)该方法可以很自然地处理可变长度的填空任务,非常有利于对下游任务的迁移。下表展示了现有原创 2022-05-27 20:37:29 · 155 阅读 · 0 评论