EMD+EEMD+CEEMD+CEEMDAN分解论文代码复现

经验模态分解EMD

起源:

1998年Huang等人提出了一种全新的信号时频分析方法——希尔伯特·黄变换(Hilbert-Huang Transform,HHT)。

该方法首先采用(Empirical Mode Decom-position,EMD)算法将非平稳信号逐级分解为若干个(Intrinsic Mode Function,IMF)和一个残余量,然后再对各个IMF分量进行希尔伯特变换(Hilbert Transform,HT)得到能够准确反映信号能量在空间(或时间)各尺度上的分布规律的Hilbert谱。

注:传送门代码复习

IMF的定义:

将待研究的信号分解为一个个单分量信号,每一个单分量信号只包含一种振荡模式(即单一的瞬时频率),这些分解后的分量称为固有模态函数。

IMF满足两点要求:
1)极值点和过零点的数目应该相等,或者最多差一个。
2)局部最大和局部最小的上下包络线均值为零。

优缺点:

优点:

EMD具有数据驱动的自适应性,能分析非线性非平稳信号,不受Heisenberg测不准原理制约等优点。
EMD在非线性非平稳信号分析中具有显著优势。与传统时频分析技术相比,EMD无需选择基函数,其分解基于信号本身极值点的分布。

缺点:

Huang提出的基于筛分(Sifting)算法的EMD得到的IMF分量存在模态混叠(Mode Mixing,MM)。模态混叠的出现不仅会导致错假的时频分布,也使IMF失去物理意义。
算法本身缺少完整的理论基础,在实际计算与应用中还存在着许多不足,包括模态混叠、端点效应、筛分迭代停止标准等问题。
一般情况下,每个固有模态函数只包含一种频率成分,不存在模态混叠的现象。但是,当信号中存在由异常事件(如间断信号、脉冲干扰和噪声等)引起的间歇(Intermittency)现象时,EMD的分解结果就会出现模态混叠。

缺点总结:

模式混合/模态混叠:

1)一个单独的IMF信号中含有不同的时间尺度;
2)相同时间尺度出现在不同的IMF中。

时间尺度:

1)信号中局部两个连续过零点之间的时间宽度;
2)信号中两个连续峰值之间的时间宽度;
3)曲率上两个连续峰值之间的时间宽度。

分解过程:

局部最大最小值;
三次样条插值,获取上下包络线;
迭代,满足停止条件。
EMD算法的计算步骤:(设待分解信号为X(t))
EMD分解

经验模态分解的基本思想:
将一个频率不规则的波化为多个单一频率的波+残波的形式。
原波形 = ∑ IMFs + 余波。
分解到重构的过程其实就是个减法到加法的过程,减法求异,剥离出频率(周期)大致相同的IMF,而加法求同,回到原波形。余波其实是个趋势线,即频率极低(周期很长)的波,可以看成是个基底,其它IMF都建筑在它之上。

集合经验模态分解EEMD

起源:

为克服EMD的模态混叠,2009年Wu和Huang提出一种噪声辅助信号分析方法——集合经验模态分解(Ensemble EMD,EEMD)。
优缺点:

优点:

该算法利用EMD滤波器组行为及白噪声频谱均匀分布的统计特性,使Sifting过程信号极值点分布更趋匀称,有效抑制由间歇性高频分量等因素造成的模态混叠。

缺点:

在EEMD中,每个加噪信号 hi(t)独立地被分解,使得每个 hi(t)分解后可能产生不同数量的IMF,导致集合平均时IMF分量对齐困难。
此外,添加的白噪声幅值和迭代次数依靠人为经验设置,当数值设置不当时,无法克服模态混叠。
集总平均次数一般在几百次以上,非常耗时。虽然增加集合平均次数可降低重构误差,但这是以增加计算成本为代价,且有限次数的集合平均并不能完全消除白噪声,导致算法重构误差大,分解完备性差。
集总平均后的IMF可能不再符合IMF的要求(偏差一般较小,不影响瞬时频率的计算)。
白噪声在集总平均之后基本抵消,但存在残留的白噪声,重建之后噪声不可忽略。
如图所示:(对比来看EEMD不存在模态混叠)
在这里插入图片描述

分解过程:

将正态分布的白噪声加到原始信号;
将加入白噪声的信号作为一个整体,然后进行EMD分解,得到各IMF分量;
重复步骤1和2,每次加入新的正态分布白噪声序列;
将每次得到的IMF做集成平均处理后作为最终结果。
在这里插入图片描述
EEMD算法的计算步骤:(设待分解信号为X(t))
在这里插入图片描述

互补集合经验模态分解CEEMD

来源:

Yeh等于2010年提出了互补集合经验模态分解(Complementary EEMD,CEEMD)
优缺点:

优点:

该方法向原始信号中加入正负成对的辅助白噪声,在集合平均时相消,能有效提高分解效率,克服EEMD重构误差大、分解完备性差的问题。
集总平均次数会减少,从百量级减小到几十的量级。
重建后的信号噪声明显减少。
集总平均次数越多,噪声越小。

缺点:

但 CEEMD的不足之处在于进行EMD分解时产生的IMF个数仍存在差异,导致最终集合平均时IMF分量对齐困难,或导致集合平均产生误差。
分解过程:
在这里插入图片描述

CEEMD算法的计算步骤:(设待分解信号为X(t))
在这里插入图片描述在这里插入图片描述

自适应噪声的完整集合经验模态分解CEEMDAN

来源:

为解决集合平均时IMF分量对齐问题,TORRES M E等在2011年从分解过程和添加白噪声上对CEEMD进行改进,提出了自适应噪声的完整集合经验模态分解(Complete EEMD with Adaptive Noise,CEEMDAN)

优缺点:

优点:

在分解过程中添加的是白噪声经EMD分解得到的各阶IMF分量,最后重构信号中的噪声残余(比EEMD的结果)更小,降低了筛选次数。
另一方面,各组信号经CEEMDAN分解出第一阶固有模态分量后立即进行集合平均,避免了CEEMD中各组IMF分解结果差异造成最后集合平均难以对齐的问题,也避免了其中某一阶IMF分解效果不好时,将影响传递给下一阶,影响后续分解。

缺点:

IMF仍包含残余噪声;在分解的早期阶段,信号会出现一些“虚假”模式,导致在前两阶或三阶模态中仍包含了大量的噪声和信号的相似尺度。
CEEMDAN算法步骤:
在这里插入图片描述

总结

  • EMD将信号进行平稳化处理的过程中存在模态混叠,影响该方法的性能及应用。
  • EEMD虽然能有效抑制模态混叠,但在分解过程中添加的辅助白噪声最终需要增加集合平均次数来抵消,计算耗时长,重构误差大。
  • CEEMD在抑制模态混叠的同时正负成对噪声相消,部分降低了残留噪声的影响,减轻了集合平均抑制添加白噪声的负担,提高了计算效率。
  • CEEMDAN及其改进方法在每次分解时添加白噪声的IMF分量,添加噪声逐级减少,固有模态分量中残留噪声更少,有效减小了重构误差,且在分解的每个阶段都有一个全局停止标准,分解效率最高。

部分代码

在这里插入图片描述

部分结果图

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 32
    点赞
  • 334
    收藏
    觉得还不错? 一键收藏
  • 25
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值