数据包络分析期望效率--DDF(方向距离函数)

文献介绍

文献名字是:Expected efficiency based on directional distance function in data envelopment analysis。

在这里插入图片描述
首先,这篇文章是在2018年 c o m p u t e r I n d u s t r i a l E n g i n e e r i n g computer Industrial Engineering computerIndustrialEngineering上发表的,还有李勇军老师!!!
这篇文章偏模型,是期望DDF模型,有兴趣的朋友可以看看。

内容介绍

方向距离函数DDF定义

首先,方向距离函数。也就是 D D F DDF DDF函数,是一种不受径向限制的、沿预先确定的方向向量估计决策单元相对效率的方法。

比如说,有 n n n D M U s DMU_s DMUs,且投入变量与产出变量分别用矩阵表示为 X = ( x i j ) ∈ ℜ m × n X=(x_{ij})\in\Re^{m\times n} X=(xij)m×n Y = ( y r j ) ∈ ℜ s × n Y=(y_{rj})\in\Re^{s\times n} Y=(yrj)s×n。本文假设规模报酬是可变的,即是 V R S VRS VRS的,那么此时的生产可能集就变成:
T = ⟮ ( x i , y r ) ∣ ∑ j λ j x i j ≤ x i , i = 1 , … , m , ∑ j λ j y r j ≥ y r , r = 1 , … , s , ∑ j λ j = 1 , λ j ≥ 0 , j = 1 , … , n ⟯ T=\lgroup(x_i,y_r)\vert\sum_{j}\lambda_jx_{ij}\leq{x_i},i=1,\dots,m,\sum_{j}\lambda_jy_{rj}\ge{}y_r,r=1,\dots,s,\sum_{j}\lambda_j=1,\lambda_{}j\ge0,j=1,\dots,n\rgroup T=(xi,yr)jλjxijxi,i=1,,m,jλjyrjyr,r=1,,s,jλj=1,λj0,j=1,,n

把方向向量记作 g = ( − g x , g y ) ≠ 0 m + s , g x ∈ R + m , g y ∈ R + s g=(-g_x,g_y)\ne0_{m+s},g_x\in{}R_{+}^{m},g_y\in{}R_{+}^{s} g=(gx,gy)=0m+s,gxR+m,gyR+s,那么这个方向距离函数可以表示成:
a ⃗ T ( x , y ; g ) = s u p { β : ( x − β g x , y + β g y ) ∈ T } \vec{a}_T(x,y;g)=sup\{\beta: (x-\beta{}g_x, y+\beta{}g_y)\in{}T\} a T(x,yg)=sup{ β:(xβgx,y+βgy)T}

那么,接下来,给出最初始的 D D F DDF DDF模型:
m a x β s . t . ∑ j = 1 n λ j x i j ≤ x i 0 − β g x , i = 1 , … , m ∑ j = 1 n λ j y r j ≥ y r 0 + β g y , r = 1 , … , s ∑ j = 1 n λ j = 1 , j = 1 , … , n λ j ≥ 0 , β ≥ 0 max \beta\\s.t.\sum_{j=1}^{n}\lambda_jx_{ij}\leq{}x_{i0}-\beta{}g_x,i=1,\dots,m \\\sum_{j=1}^{n}\lambda_{j}y_{rj}\geq{}y_{r0}+\beta{}g_y,r=1,\dots,s\\\sum_{j=1}^{n}\lambda_{j}=1,j=1,\dots,n\\\lambda_j\ge0,\beta\ge0 maxβs.t.j=1

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值