数据包络分析(超效率-SBM模型)附python代码


这段时间差不多忙完了,终于有时间可以来经营我的博客了。
上阵子挺多人私信我,原谅我记性不好,可能没有回复全。
这篇文章是超效率的扩展。

超效率SBM

SBM本身就是非径向模型(non-radial model),想要了解径向超效率的请自行去前面翻阅。

上篇文章说到super-SBM的一个模型,公式为:
在这里插入图片描述

这个模型是分式模型,我们可以通过charnes cooper变换,将其转变成为:
在这里插入图片描述

在这里插入图片描述

python代码(部分)

在编程过程中,本来我以为第一个模型是无法出结果的,但是很无语的是,是我有bug了。这里就附上第一个模型的超效率核心部分代码(第二个也是差不多,万变不离其宗)。

首先,数据为:
在这里插入图片描述

    def __SBM_super_C(self):
        for k in self.DMUs:

            MODEL = gurobipy.Model()

            fi = MODEL.addVars(self.m1)
            lambdas = MODEL.addVars(self.DMUs)
            fo 
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值