多元线性回归-最小二乘法 最大似然估计

一、引言

设随机变量 y y y与一般变量 x 1 , x 2 , . . . , x p x_{1},x_{2},...,x_{p} x1,x2,...,xp的线性回归模型为:
y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β p x p + ε y=\beta _{0}+\beta _{1}x_{1}+\beta _{2}x_{2}+...+\beta _{p}x_{p}+\varepsilon y=β0+β1x1+β2x2+...+βpxp+ε
式中, β 0 , β 1 , . . . , β p \beta _{0},\beta _{1},...,\beta _{p} β0,β1,...,βp是要估计的参数, β 0 \beta _{0} β0为回归常数, β 1 , . . . , β p \beta _{1},...,\beta _{p} β1,...,βp为回归系数; x 1 , x 2 . . . , x p x _{1},x_{2}...,x _{p} x1,x2...,xp为解释变量; y y y为被解释变量; ε \varepsilon ε为残差。

对于实际问题,获得 n n n组观测数据 ( x i 1 , x i 2 , . . . , x i p ; y i ) , i = 1 , 2 , . . . , n (x_{i1},x_{i2},...,x_{ip}; y_{i}),i=1,2,...,n (xi1,xi2,...,xip;yi),i=1,2,...,n,则线性回归模型可以表示为:
{ y 1 = β 0 + β 1 x 11 + β 2 x 12 + . . . + + β p x 1 p + ε 1 y 2 = β 0 + β 1 x 21 + β 2 x 22 + . . . + + β p x 2 p + ε 2 . . . . . . y n = β 0 + β 1 x n 1 + β 2 x n 2 + . . . + + β p x n p + ε n \begin{cases} y_{1}=\beta _{0}+\beta _{1}x_{11}+\beta _{2}x_{12}+...++\beta _{p}x_{1p}+\varepsilon_{1} \\[2ex] y_{2}=\beta _{0}+\beta _{1}x_{21}+\beta _{2}x_{22}+...++\beta _{p}x_{2p}+\varepsilon_{2} \\[2ex] ......\\[2ex] y_{n}=\beta _{0}+\beta _{1}x_{n1}+\beta _{2}x_{n2}+...++\beta _{p}x_{np}+\varepsilon_{n} \\[2ex] \end{cases} y1=β0+β1x11+β2x12+...++βpx1p+ε1y2=β0+β1x21+β2x22+...++βpx2p+ε2......yn=β0+β1xn1+β2xn2+...++βpxnp+εn
写成矩阵形式 y = X β + ε y=X\beta+\varepsilon y=Xβ+ε,式中
y = [ y 1 y 2 . . . y n ] X = [ 1 x 11 . . . x 1 p 1 x 21 . . . x 2 p . . . . . . . . . . . . 1 x n 1 . . . x n p ] β = [ β 1 β 2 . . . β p ] ε = [ ε 1 ε 2 . . . ε n ] y=\begin{bmatrix}y_{1}\\ y_{2}\\ ...\\ y_{n}\end{bmatrix} X=\begin{bmatrix}1 & x_{11}& ...& x_{1p}& \\ 1 & x_{21}& ...& x_{2p}& \\ ... & ...& ...& ... & \\ 1 & x_{n1}& ...& x_{np}& \end{bmatrix} \beta=\begin{bmatrix}\beta_{1}\\ \beta_{2}\\ ...\\ \beta_{p}\end{bmatrix} \varepsilon=\begin{bmatrix}\varepsilon_{1}\\ \varepsilon_{2}\\ ...\\ \varepsilon_{n}\end{bmatrix} y=y1y2...ynX=11...1x11x21...xn1............x1px2p...xnpβ=β1β2...βpε=ε1ε2...εn
X是 n × ( p + 1 ) n\times (p+1) n×(p+1)阶矩阵,是自变量的样本矩阵。

二、假设条件

假设条件检验方法失效后果
(1)样本观测样本数据是独立观测的;
(2)解释变量 x 1 , x 2 . . . , x p x _{1},x_{2}...,x _{p} x1,x2...,xp是确定性变量,不是随机变量;
(3)自变量和因变量是线性关系;【散点图分析: y − x y- x yx 散点图】预测能力差
(4)随机变量残差(扰动项) ε 1 , ε 2 , . . . , ε n \varepsilon_{1},\varepsilon_{2},...,\varepsilon_{n} ε1,ε2,...,εn独立同分布;【异方差检验: ε − x \varepsilon-x εx 散点图、DW检验】扰动项标准差估计不准, T检验失效
(5) ε i ∼ N ( 0 , σ 2 ) \varepsilon_{i}\sim N(0,\sigma ^{2}) εiN(0,σ2),则 ε ∼ N ( 0 , σ 2 ) \varepsilon\sim N(0,\sigma ^{2}) εN(0,σ2)【QQ检验】T检验失效
(6)解释变量和扰动项不存在线性关系;【残差图分析: ε − x \varepsilon- x εx 散点图 】回归系数估计有偏
(7)解释变量之间不存在线性关系或强相关;【膨胀系数判断】回归系数的标准误被放大

三、回归参数估计

3.1 最小二乘估计

对于模型 y = X β + ε y=X\beta+\varepsilon y=Xβ+ε,最小二乘法就是寻找 β 0 , β 1 , . . . , β p \beta _{0},\beta _{1},...,\beta _{p} β0,β1,...,βp,使离差平方和达到最小/极小值,则
Q ( β 0 ^ , β 1 ^ , . . . , β p ^ ) = m i n ∑ i = 1 n ( y i − β 0 − β 1 x i 1 + β 2 x i 2 + . . . + + β p x i p ) 2 Q(\widehat{\beta _{0}},\widehat{\beta _{1}},...,\widehat{\beta _{p}})=min\sum_{i=1}^n(y_{i}-\beta _{0}-\beta _{1}x_{i1}+\beta _{2}x_{i2}+...++\beta _{p}x_{ip})^2 Q(β0 ,β1 ,...,βp )=mini=1n(yiβ0β1xi1+β2xi2+...++βpxip)2
β 0 ^ , β 1 ^ , . . . , β p ^ \widehat{\beta _{0}},\widehat{\beta _{1}},...,\widehat{\beta _{p}} β0 ,β1 ,...,βp 为回归参数的估计值。根据微分求极值原理,
{ ∂ Q ∂ β 0 = 0 ∂ Q ∂ β 1 = 0 ∂ Q ∂ β 2 = 0 . . . ∂ Q ∂ β p = 0 \begin{cases} \frac{\partial Q}{\partial \beta _{0}}=0 \\[2ex] \frac{\partial Q}{\partial \beta _{1}}=0 \\[2ex] \frac{\partial Q}{\partial \beta _{2}}=0 \\[2ex] ...\\[2ex] \frac{\partial Q}{\partial \beta _{p}}=0\\[2ex] \end{cases} β0Q=0β1Q=0β2Q=0...βpQ=0
整理后得
β ^ = ( X T X ) − 1 X T y \widehat{\beta }=(X^{T}X)^{-1}X^{T}y β =(XTX)1XTy

y ^ = β 0 ^ + β 1 ^ x 1 + β 2 ^ x 2 + . . . + β p ^ x p \widehat{y}=\widehat{\beta _{0}}+\widehat{\beta _{1}}x_{1}+\widehat{\beta _{2}}x_{2}+...+\widehat{\beta _{p}}x_{p} y =β0 +β1 x1+β2 x2+...+βp xp

3.2 最大似然估计

多元线性回归参数的最大似然估计与一元线性回归的思想一致,对于模型 y = X β + ε y=X\beta+\varepsilon y=Xβ+ε,有 ε ∼ N ( 0 , σ 2 ) \varepsilon\sim N(0,\sigma ^{2}) εN(0,σ2) X X X 是与 y y y 相关的非随机变量,则 y ∼ N ( X β , σ 2 ) y\sim N(X\beta,\sigma ^{2}) yN(Xβ,σ2)。此时最大似然函数
L = ( 2 π σ 2 ) − n / 2 e x p ( − 1 2 σ 2 ( y − X β ) T ( y − X β ) ) L=(2 \pi \sigma^2)^{-n/2}exp(-\frac{1}{2\sigma^2}(y-X\beta)^T(y-X\beta)) L=(2πσ2)n/2exp(2σ21(yXβ)T(yXβ))
取对数后
l n L = − n 2 l n ( 2 π ) − n 2 l n ( σ 2 ) − 1 2 σ 2 ( y − X β ) T ( y − X β ) ) lnL=-\frac{n}{2}ln(2 \pi )-\frac{n}{2}ln(\sigma^2)-\frac{1}{2\sigma^2}(y-X\beta)^T(y-X\beta)) lnL=2nln(2π)2nln(σ2)2σ21(yXβ)T(yXβ))
这等价于使 ( y − X β ) T ( y − X β ) (y-X\beta)^T(y-X\beta) (yXβ)T(yXβ)达到最小值,与最小二乘法一致。参数的估计结果
β ^ = ( X T X ) − 1 X T y \widehat{\beta }=(X^{T}X)^{-1}X^{T}y β =(XTX)1XTy

y ^ = β 0 ^ + β 1 ^ x 1 + β 2 ^ x 2 + . . . + β p ^ x p \widehat{y}=\widehat{\beta _{0}}+\widehat{\beta _{1}}x_{1}+\widehat{\beta _{2}}x_{2}+...+\widehat{\beta _{p}}x_{p} y =β0 +β1 x1+β2 x2+...+βp xp

参考书:《应用回归分析》何晓群

  • 2
    点赞
  • 42
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
多元线性回归(Multiple Linear Regression)是一种统计学方法,用于研究一个或多个自变量(也称为预测变量或输入变量)如何预测一个因变量(目标变量或输出变量)。在数学建模中,它假设因变量 Y 关于自变量 X1, X2, ..., Xn 的线性组合是成立的,即 Y 与自变量之间存在线性关系。 其基本形式可以表示为: \[ Y = \beta_0 + \beta_1X_1 + \beta_2X_2 + ... + \beta_nX_n + \epsilon \] 其中: - \( Y \) 是因变量的观测值, - \( \beta_0 \)(截距)是当所有自变量为 0 时的预测值, - \( \beta_1, \beta_2, ..., \beta_n \) 分别是自变量对因变量影响的系数(斜率), - \( X_1, X_2, ..., X_n \) 是自变量的值, - \( \epsilon \) 是随机误差项,通常假设为独立同分布的正态误差,它反映了数据中的不可预测性。 在估计模型参数的过程中,我们会用到最小二乘法,即寻找使残差平方和(\( \epsilon^2 \) 的总和)最小的系数组合。回归系数的计算可以通过求解然函数最大化的导数来得到,或者是直接求解正规方程组。 多元线性回归的一些关键概念包括: 1. **回归方程**:每个观测值的预测模型。 2. **决定系数(R-squared)**:衡量模型解释因变量变异性的比例。 3. **残差分析**:检查模型拟合效果,如查看残差是否独立且符合正态分布等。 4. **模型诊断**:检查多重共线性、异方差性等问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值