【AI知识点】三元组损失(Triplet Loss)

【AI论文解读】【AI知识点】【AI小项目】【AI战略思考】


三元组损失(Triplet Loss) 是一种用于衡量样本之间相对相似性的损失函数(Loss Function),广泛应用于度量学习(Metric Learning)任务中,尤其是在人脸识别、图像检索、文本匹配等问题中。它的主要目标是通过最小化正样本(positive example)和查询样本(anchor example)之间的距离,同时最大化负样本(negative example)与查询样本之间的距离,从而确保模型可以更好地区分相似样本与不相似样本。

1. 基本概念

三元组损失的核心在于三元组(Triplet) 这个概念,即每次训练时,模型会同时处理三个样本:

  1. Anchor(锚点样本):代表待分类的样本,或是查询样本。例如,在人脸识别中,它可以是一张目标人脸图片。

  2. Positive(正样本):与锚点样本相似的样本。例如,在人脸识别中,它可以是同一个人的另一张图片。

  3. Negative(负样本):与锚点样本不相似的样本。例如,在人脸识别中,它可以是其他人的图片。

三元组损失的目标是:


2. 数学表达

设:

  • a \mathbf{a} a锚点样本的嵌入向量,
  • p \mathbf{p} p正样本的嵌入向量,
  • n \mathbf{n} n负样本的嵌入向量。

三元组损失的定义为:

L ( a , p , n ) = max ⁡ ( 0 , d ( a , p ) − d ( a ,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值