向量空间(vector space),有时称为线性空间,是数学中线性代数的一部分,它描述了向量的集合以及这些向量可以进行的操作。向量空间是计算机科学、机器学习和自然语言处理(NLP)等领域的基础概念,尤其在表示数据的特征时,向量空间模型得到了广泛应用。
1. 向量空间的基本定义
在数学上,向量空间是由向量组成的集合,这些向量满足以下两个条件:
- 加法封闭性:任意两个向量相加的结果仍然在这个向量空间中。
- 数乘封闭性:任意向量乘以一个数(标量)的结果也在这个向量空间中。
更正式地说,向量空间包含:
- 向量:可以是一个有序的数值列表,如 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \dots, v_n) v=(v1,v2,…,vn),每个数值可以是实数、复数等。
- 标量:通常是实数或复数,用来对向量进行伸缩操作。
- 向量加法:两个向量相加的运算,遵循分量逐项相加的规则。
- 标量乘法:向量与标量相乘,表示向量各分量都乘以同一个数。
2. 向量空间的条件
为了是一个向量空间,某集合和运算必须满足一些基本的公理,主要包括:
- 交换律:向量加法满足交换律,即 v + w = w + v \mathbf{v} + \mathbf{w} = \mathbf{w} + \mathbf{v} v+w=w+v。
- 结合律:加法满足结合律,即 ( v + w ) + u = v + ( w + u ) (\mathbf{v} + \mathbf{w}) + \mathbf{u} = \mathbf{v} + (\mathbf{w} + \mathbf{u}) (v+w)+u=v+(w+u)。
- 存在零向量:存在一个特殊的零向量 0 \mathbf{0} 0,使得 v + 0 = v \mathbf{v} + \mathbf{0} = \mathbf{v} v+0=v 对任何向量 v \mathbf{v} v 都成立。
- 标量乘法的分配律:标量和向量的乘法也满足分配律。
3. 向量的表示
在向量空间中,向量通常表示为一个有序数组或列向量,例如:
v = ( v 1 v 2 ⋮ v n ) \mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} v= v1v2⋮vn
或者更简单的形式如 ( v 1 , v 2 , … , v n ) (v_1, v_2, \dots, v_n) (v1,v2,…,vn),其中每个 v i v_i vi 是向量的一个分量。在机器学习中,向量空间中的每个向量可以代表一个数据点的特征。比如,在文本处理中,向量可以用来表示词或句子,每个分量对应一个特定的特征值。
4. 向量空间中的基本运算
在向量空间中,我们可以对向量进行如下基本运算:
a. 向量加法
向量加法是分量逐项相加,例如,给定两个向量 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \dots, v_n) v=(v1,v2,…,vn) 和 w = ( w 1 , w 2 , … , w n ) \mathbf{w} = (w_1, w_2, \dots, w_n) w=(w1,w2,…,wn),它们的和为:
v + w = ( v 1 + w 1 , v 2 + w 2 , … , v n + w n ) \mathbf{v} + \mathbf{w} = (v_1 + w_1, v_2 + w_2, \dots, v_n + w_n) v+w=(v1+w1,v2+w2,…,vn+wn)
b. 标量乘法
标量乘法表示一个向量 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \dots, v_n) v=(v1,v2,…,vn) 乘以一个标量 α \alpha α,得到一个新的向量:
α v = ( α v 1 , α v 2 , … , α v n ) \alpha \mathbf{v} = (\alpha v_1, \alpha v_2, \dots, \alpha v_n) αv=(αv1,αv2,…,αvn)
这个操作会改变向量的长度,但不会改变它的方向。
c. 内积(点积)
内积(点积)是两个向量之间的乘积,结果是一个标量。给定两个向量 v = ( v 1 , v 2 , … , v n ) \mathbf{v} = (v_1, v_2, \dots, v_n) v=(v1,v2,…,vn) 和 w = ( w 1 , w 2 , … , w n ) \mathbf{w} = (w_1, w_2, \dots, w_n) w=(w1,w2,…,wn),它们的点积定义为:
v ⋅ w = v 1 w 1 + v 2 w 2 + ⋯ + v n w n = ∑ i = 1 n v i w i \mathbf{v} \cdot \mathbf{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{i=1}^n v_i w_i v⋅w=v1w1+v2w2+⋯+vnwn=i=1∑nviwi
内积可以用来衡量两个向量之间的相似性:内积越大,表示向量的方向越相似。
d. 向量长度(范数)
向量的长度或范数表示为向量的模,定义为:
∣ ∣ v ∣ ∣ = v 1 2 + v 2 2 + ⋯ + v n 2 ||\mathbf{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2} ∣∣v∣∣=v12+v22+⋯+vn2
向量的长度表示该向量在向量空间中的“大小”。
5. 向量空间的维度
向量空间的维度是指向量的分量数量。例如,二维空间中的向量有两个分量( x x x 和 y y y 坐标),三维空间中的向量有三个分量( x x x、 y y y 和 z z z 坐标)。在高维空间中,向量可以包含任意数量的分量,向量空间的维度等于这些分量的数量。
例如:
- 在二维空间中,向量 v = ( x , y ) \mathbf{v} = (x, y) v=(x,y) 是二维的,表示为平面上的一个点。
- 在三维空间中,向量 v = ( x , y , z ) \mathbf{v} = (x, y, z) v=(x,y,z) 是三维的,表示为空间中的一个点。
- 在机器学习中,向量通常是高维的,例如一个100维的向量表示文本中的100个特征。
6. 向量空间在机器学习中的应用
在机器学习中,向量空间模型广泛应用于表示数据点的特征。以下是几个常见的应用:
a. 文本处理
在自然语言处理(NLP)中,向量空间常用来表示文本、句子或单词。比如,词嵌入(如Word2Vec或GloVe)将词语映射为向量,类似词语的向量会在向量空间中更接近,而不相似的词语向量会距离更远。
例如,词语“猫”和“狗”在向量空间中可能具有相近的向量表示,而“猫”和“汽车”则相距较远。
b. 推荐系统
在推荐系统中,用户和物品都可以被表示为向量。系统可以通过计算用户向量和物品向量之间的距离或相似度,来决定推荐哪些物品给用户。例如,点积或余弦相似度可以用于衡量用户与物品之间的匹配度。
c. 图像处理
在图像处理中,向量空间用来表示图像的特征。每个图像可以通过特征提取技术转换成一个向量,向量的每个分量对应图像的某个特征值。类似的图像在向量空间中距离较近,不相似的图像距离较远。
d. 聚类分析
在数据聚类任务中,向量空间模型用于将数据点表示为向量。通过在向量空间中计算不同数据点之间的距离,聚类算法可以将相似的点归为同一类。
7. 向量空间的直观解释
可以将向量空间想象为一个坐标系或多维空间。在这个空间中,每个向量都是一个点,向量之间的距离表示它们的相似性。这个空间可以是二维、三维甚至更高维的,具体取决于数据的复杂度。
例如,在二维平面上,向量 ( 3 , 4 ) (3, 4) (3,4) 表示一个从原点到 ( 3 , 4 ) (3, 4) (3,4) 点的箭头,而在更高维的空间中,向量可以表示更多的特征维度,如在自然语言处理中,每个维度可能对应某个单词的某种特性。
总结
向量空间是一个由向量组成的空间,向量可以通过加法和标量乘法进行运算。向量空间在机器学习中起着至关重要的作用,用来表示数据的特征、计算相似性和进行数据分析。它的关键特性包括维度、向量加法、标量乘法和内积运算,在许多领域(如文本处理、图像分析和推荐系统)中都有广泛的应用。