【学习笔记】迁移学习分类

什么是迁移学习

通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三。由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识。如何合理地找寻它们之间的相似性,进而利用这个桥梁来帮助学习新知识,是迁移学习的核心问题。
特别地,因为涉及到迁移,所以对应于两个基本的领域:源领域 (Source Domain)
目标领域 (Target Domain)。这两个概念很好理解。源领域就是有知识、有大量数据标注
的领域,是我们要迁移的对象;目标领域就是我们最终要赋予知识、赋予标注的对象。知识
从源领域传递到目标领域,就完成了迁移。

迁移学习分类

在这里插入图片描述

四个分类准则:

1、目标域有无标签;

  1. 监督迁移学习 (Supervised Transfer Learning)
  2. 半监督迁移学习 (Semi-Supervised Transfer Learning)
  3. 无监督迁移学习 (Unsupervised Transfer Learning)

2、学习方法;

  1. 基于样本的迁移学习方法 (Instance based Transfer Learning)
    相似的样本,赋予高权重
  2. 基于特征的迁移学习方法 (Feature based Transfer Learning)
    源域与目标域特征不在同一空间,通过对特征空间进行变换使其在某一空间相似
  3. 基于模型的迁移学习方法 (Model based Transfer Learning)
    通过模型参数共享实现迁移
  4. 基于关系的迁移学习方法 (Relation based Transfer Learning)
    比较玄学

3、特征属性;

  1. 同构迁移学习 (Homogeneous Transfer Learning)
    特征语义维度相同,如图片→图片
  2. 异构迁移学习 (Heterogeneous Transfer Learning)
    特征语义维度不同,如图片→文字

4、离线、在线学习形式。

  1. 离线迁移学习 (Offline Transfer Learning)
    源域和目标域均是给定的,迁移一次即可
  2. 在线迁移学习 (Online Transfer Learning)
    数据的动态加入,迁移学习算法也可以不断地更新
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值