什么是迁移学习
通俗来讲,就是运用已有的知识来学习新的知识,核心是找到已有知识和新知识之间的相似性,用成语来说就是举一反三。由于直接对目标域从头开始学习成本太高,我们故而转向运用已有的相关知识来辅助尽快地学习新知识。如何合理地找寻它们之间的相似性,进而利用这个桥梁来帮助学习新知识,是迁移学习的核心问题。
特别地,因为涉及到迁移,所以对应于两个基本的领域:源领域 (Source Domain) 和
目标领域 (Target Domain)。这两个概念很好理解。源领域就是有知识、有大量数据标注
的领域,是我们要迁移的对象;目标领域就是我们最终要赋予知识、赋予标注的对象。知识
从源领域传递到目标领域,就完成了迁移。
迁移学习分类
四个分类准则:
1、目标域有无标签;
- 监督迁移学习 (Supervised Transfer Learning)
- 半监督迁移学习 (Semi-Supervised Transfer Learning)
- 无监督迁移学习 (Unsupervised Transfer Learning)
2、学习方法;
- 基于样本的迁移学习方法 (Instance based Transfer Learning)
相似的样本,赋予高权重 - 基于特征的迁移学习方法 (Feature based Transfer Learning)
源域与目标域特征不在同一空间,通过对特征空间进行变换使其在某一空间相似 - 基于模型的迁移学习方法 (Model based Transfer Learning)
通过模型参数共享实现迁移 - 基于关系的迁移学习方法 (Relation based Transfer Learning)
比较玄学
3、特征属性;
- 同构迁移学习 (Homogeneous Transfer Learning)
特征语义维度相同,如图片→图片 - 异构迁移学习 (Heterogeneous Transfer Learning)
特征语义维度不同,如图片→文字
4、离线、在线学习形式。
- 离线迁移学习 (Offline Transfer Learning)
源域和目标域均是给定的,迁移一次即可 - 在线迁移学习 (Online Transfer Learning)
数据的动态加入,迁移学习算法也可以不断地更新