36匹马分6个组,分别为A、B、C、D、E、F组.
第一轮,每个组各跑一次,取每组前三名,标识为A1、A2、A3,B1、B2、B3,以此类推.
第二轮,每个组的第一名(A1——F1)拉出来跑一次,假设名次是:A1第一名,B1第二名,C1第三名.
则:
1.后三名及其所在组的其余组员均被淘汰(小组头名都没能进前三,当然是全部淘汰啦)
2.两战全胜的A1已经提前夺冠了.
3.由于A1已经占去了一个名额,只剩两个名额了,则B3、C3可以淘汰了.而且由于C1的最好成绩也只能是第三名了,所以C2也可以淘汰了.
第三轮,A2、A3、B1、B2、C1五匹马跑,取前两名.
其中第一轮跑6次,第二轮第三轮都各只跑1次,一共8次.
首先对36匹马进行分组:
A1,A2,...,A6;
B1,B2,...,B6;
C1,C2,...,C6;
D1,D2,...,D6;
E1,E2,...,E6;
F1,F2,...,F6;
将第一组中的3匹优胜马按A1,A2,A3取出,其中A1最快,同理第二组B1,B2,B3,直到F1,F2,F3。这样总共跑了6次。
第二步,让每支队伍的第一名在一起跑,取前三名,假设结果是A1>B1>C1>D1>E1>F1
那么A1肯定是整体的第一名,
下来只需要找出第二名和第三名:
因为马的数量是有限的,基于第一和第二步,我们可以推出可能成为第二的马A2,B1,
有可能成为第三的马有A3,B2,C1,一共五匹。
让这五匹马一起跑,选出前两名,就分别是整体的第二和第三名。
总结:总共跑了6+1+1=8次