绕不过的BP算法,从这里开始!

12 篇文章 12 订阅
5 篇文章 3 订阅

绕不过的BP算法,从这里开始!

原文链接:https://aistudio.baidu.com/aistudio/projectdetail/2411797

其实对于每个机器学习和深度学习的初学者来说,都绕不开一个算法,那就是bp算法。我参考了张玉宏-《深度学习之美》这本书并编写这篇推文,本文主要是对BP算法的代码实现和详细的批注,希望对你学习有所帮助。阅读之前可以看一下这篇文章学习下基本原理——BP算法双向传,链式求导最缠绵,个人认为已经讲的非常详细易懂了。

再一个推荐一篇文章,或许对你的AI学习生涯有所帮助——李沐:用随机梯度下降来优化人生!

1.BP算法简介

BP 算法,在本质上是一个好用的优化函数 。 说到 BP 算法,我们通常强调的是反向传播 。 其实在本质上,它是一个双向算法。

  • 正向传播输入信号,输出分类信息(对于有监督学习而言,基本上都可归属于分类算法)

  • 反向传播误差信息,调整全网权值(通过微调网络参数,让下一轮的输出更加准确)

2.初始化神经元

定义的网络是只有一个隐含层( 2 个神经元)和输出层( 2 个神经元)的神经网络。

from random import seed
from random import random

# 初始化网络,n_inputs输入神经元数量,n_hidden隐含层神经元的个数,n_outputs输出神经元的个数
def initialize_network(n_inputs, n_hidden, n_outputs):
    network = list()
    # 隐含层,多出一个权值是留给偏置的。
    hidden_layer = [{'weights': [random() for i in range(n_inputs + 1)]} for i in range(n_hidden)]
    network.append(hidden_layer)
    output_layer = [{'weights': [random() for i in range(n_hidden + 1)]} for i in range(n_outputs)]
    network.append(output_layer)
    return network


if __name__ == '__main__':
    seed(1)
    network = initialize_network(2, 2, 2)
    for layer in network:
        print(layer)

3.信息前向传播

信息前向传播,简单说来,就是把信号通过激活函数的加工,一层一层的向前“蔓延”,直到抵达输出层。在这里,假设神经元内部的激活函数为 S i g m o d ( f ( x ) = 1 / ( 1 + e − x ) ) Sigmod(f(x)=1/(1+e^{-x})) Sigmodf(x)=1/(1+ex))。之所以选用这个激活函数,主要因为它的求导形式非常简洁而优美:

事实上,类似于感知机,每一个神经元的功能都可细分两大部分:

  • 汇集各路链接带来的加权信息
  • 加权信息在激活函数的“加工”下,神经元给出相应的输出

# 计算神经元的激活值(加权之和)
def activate(weights, inputs):
    activation = weights[-1] # 实际是指weights[-1]*1即偏置乘以1
    for i in range(len(weights) - 1):
        activation += weights[i] * inputs[i]
    return activation

一旦神经元被激活,它的输出取决于激活函数的特性。因此,下面的工作就是设计激活函
数。激活函数有多种,如Sigmoid、Tanh或ReLU等。为简单起见,我们还是选
择传统的Sigmoid,它的定义非常简单。

# 神经元的激活函数
def transfer(activation):
    return 1.0 / (1.0 + exp(-activation))

4.BP 算法的前向传播

下面,设计一个前向传播函数 forward_propagate(),它把原始数据的每一行作为一个输入,然后计算一次输出 。 我们利用一个数组new_inputs ,记录前一层的输出,然后让其作为下一层新的输入

from math import exp

# 计算神经元的激活值(加权之和)
def activate(weights, inputs):
    activation = weights[-1]  # 实际是指weights[-1]*1
    for i in range(len(weights) - 1):
        activation += weights[i] * inputs[i]
    return activation


# 神经元的激活函数
def transfer(activation):
    return 1.0 / (1.0 + exp(-activation))


# 计算神经网络的正向传播
def forward_propagate(network, row):
    inputs = row
    for layer in network:
        new_inputs = []
        for neuron in layer:
            activation = activate(neuron['weights'], inputs)
            # 添加新属性直接给出新key赋值就行
            neuron['output'] = transfer(activation)
            new_inputs.append(neuron['output'])
            print(neuron)
        inputs = new_inputs
    return inputs


if __name__ == '__main__':
    # 测试正向传播,注意权值是输出层计算两个神经元的权值
    network = [[{'weights': [0.13436424411240122, 0.8474337369372327, 0.763774618976614]},
                {'weights': [0.2550690257394217, 0.49543508709194095, 0.4494910647887381]}],
               [{'weights': [0.651592972722763, 0.7887233511355132, 0.0938595867742349]},
                {'weights': [0.02834747652200631, 0.8357651039198697, 0.43276706790505337]}]]
    # 表明这是一个样本,它有两个特征,代表输入层有两个神经元,
    # 它们的特征值分别是“ 1 ”和“0”,最后一个值为“None”,表示预期的输出值 。
    row = [1, 0, None]
    output = forward_propagate(network, row)
    print(output)

5.BP 算法的误差反向传播

在计算出网络的正向输出后,下面就该计算误差了。这里的误差是指预期输出(可视为一个常数)和前向传播的实际输出之间的差值。这个差值作为网络权值调控的信号,反向传递给各个隐含层,让其按照预定的规则更新权值。

反向传播过程中要用到传递函数的导数。当我们采用Sigmoid作为激活函数时,它的求导形式是非常简单的,它的求导形式为 f ′ ( x ) = f ( x ) ( 1 − f ( x ) ) f'(x)=f(x)(1-f(x)) f(x)=f(x)(1f(x))即: ( 1 1 + e − x ) ′ = 1 1 + e − x ( 1 − 1 1 + e − x ) (\frac{1}{1+e^{-x}})'=\frac{1}{1+e^{-x}}(1-\frac{1}{1+e^{-x}}) (1+ex1)=1+ex1(11+ex1),所以直接把激活函数得到的值带入就行。

# 计算激活函数的导数
def transfer_derivative(output):
    return output * (1.0 - output)
# 反向传播误差信息,并存储在神经元中
def backward_propagate_error(network, expected):
    # reversed返回一个反转的迭代器,i是从1开始再到0,所以先到输出层
    for i in reversed(range(len(network))):
        layer = network[i]
        errors = list()
        if i != len(network)-1:  # 筛选出隐含层
            for j in range(len(layer)):
                error = 0.0  # 令误差为0
                # 计算每个神经元的“加权误差”
                for neuron in network[i + 1]:
                    error += (neuron['weights'][j] * neuron['responsibility'])
                errors.append(error)
        else:  # 这个为输出层
            for j in range(len(layer)):
                neuron = layer[j]
                errors.append(expected[j] - neuron['output'])
        # 计算隐含层神经元的纠编责任
        for j in range(len(layer)):
            neuron = layer[j]
            # 第一遍先计算出输出层纠偏责任,然后输出层责任,反向传播到隐含层进行加工处理。
            # 第二遍计算隐含层神经元的纠偏责任
            neuron['responsibility'] = errors[j] * transfer_derivative(neuron['output'])


if __name__ == '__main__':
    # 测试反向传播,数据为上文中正向输出结果
    network = [[{'weights': [0.13436424411240122, 0.8474337369372327, 0.763774618976614], 'output': 0.7105668883115941},
                {'weights': [0.2550690257394217, 0.49543508709194095, 0.4494910647887381], 'output': 0.6691980263750579}],
               [{'weights': [0.651592972722763, 0.7887233511355132, 0.0938595867742349], 'output': 0.7473771139195361},
                {'weights': [0.02834747652200631, 0.8357651039198697, 0.43276706790505337], 'output': 0.733450902916955}]]
    # 预期的输出值
    expected = [0, 1]
    backward_propagate_error(network, expected)
    for layer in network:
        print(layer)

输出:

[{'weights': [0.13436424411240122, 0.8474337369372327, 0.763774618976614], 'output': 0.7105668883115941, 'responsibility': -0.01860577502351945}, {'weights': [0.2550690257394217, 0.49543508709194095, 0.4494910647887381], 'output': 0.6691980263750579, 'responsibility': -0.014996444841496356}]
[{'weights': [0.651592972722763, 0.7887233511355132, 0.0938595867742349], 'output': 0.7473771139195361, 'responsibility': -0.14110820977007524}, {'weights': [0.02834747652200631, 0.8357651039198697, 0.43276706790505337], 'output': 0.733450902916955, 'responsibility': 0.05211052864753572}]

从输出结果可以看出,反向传播后,网络的权值并没有发生变化。这是因为为了简化网络的反向传播过程,我们并没有添加权值更新的操作。

权值的反向传播过程可以另行定义函数update_weights( )来实现,在后面的训练网络中,我们会使用这个函数,并会给出详细实现。

# 根据误差,更新网络权重
def update_weights(network, row, l_rate):
    for i in range(len(network)):
        inputs = row[:-1]  # 0到倒数第一个,不要最后一个,最后一个为预期值
        if i != 0:  # 如果不是输入层,inputs会改变
            # 上一层的输出就是这一层的输入
            inputs = [neuron['output'] for neuron in network[i - 1]]
        for neuron in network[i]:
            for j in range(len(inputs)):
                # 本身权值加上误差,从而更新
                neuron['weights'][j] += l_rate * neuron['responsibility'] * inputs[j]
            # 最后一个权值是偏置的权值,则默认输入为1
            neuron['weights'][-1] += l_rate * neuron['responsibility']

6.训练网络(解决异或问题)

结合前面的分析,下面我们给出BP算法的全部代码,这里包括权值更新函数update_weights( )。训练的数据就是“异或”真值表,然后我们用这个训练好的网络,来测试它的正确性。

输入a输入b输出
110
101
011
000
from math import exp
from random import seed
from random import random


# 初始化神经网络,n_inputs输入神经元数量,n_hidden隐含层神经元的个数,n_outputs输出神经元的个数
def initialize_network(n_inputs, n_hidden, n_outputs):
    network = list()
    # 隐含层,多出一个权值是留给偏置的
    hidden_layer = [{'weights': [random() for i in range(n_inputs + 1)]} for i in range(n_hidden)]
    network.append(hidden_layer)
    output_layer = [{'weights': [random() for i in range(n_hidden + 1)]} for i in range(n_outputs)]
    network.append(output_layer)
    return network


# 计算神经元的激活值(加权之和)
def activate(weights, inputs):
    activation = weights[-1]
    for i in range(len(weights)-1):
        activation += weights[i] * inputs[i]
    return activation


# 定义激活函数
def transfer(activation):
    return 1.0 / (1.0 + exp(-activation))


# 计算神经网络的正向传播,row为输入
def forward_propagate(network, row):
    inputs = row
    for layer in network:
        new_inputs = []
        for neuron in layer:
            activation = activate(neuron['weights'], inputs)
            neuron['output'] = transfer(activation)
            new_inputs.append(neuron['output'])
        inputs = new_inputs  # 更新下一层的输入
    return inputs


# 计算激活函数的导数
def transfer_derivative(output):
    return output * (1.0 - output)


# 反向传播误差信息,并将纠偏责任存储在神经元中
def backward_propagate_error(network, expected):
    # reversed返回一个反转的迭代器,i是从1开始再到0,所以先到输出层
    for i in reversed(range(len(network))):
        layer = network[i]
        errors = list()
        if i != len(network)-1:  # 隐含层
            for j in range(len(layer)):
                error = 0.0
                for neuron in network[i + 1]:
                    error += (neuron['weights'][j] * neuron['responsibility'])
                errors.append(error)
        else:  # 输出层
            for j in range(len(layer)):
                neuron = layer[j]
                errors.append(expected[j] - neuron['output'])
        # 第一遍先计算输出层纠偏责任,第二遍是计算隐含层神经元纠偏责任
        for j in range(len(layer)):
            neuron = layer[j]
            neuron['responsibility'] = errors[j] * transfer_derivative(neuron['output'])


# 根据误差,更新网络权重
def update_weights(network, row, l_rate):
    for i in range(len(network)):
        inputs = row[:-1]  # 0到倒数第一个,不要最后一个,最后一个为预期值
        if i != 0:  # 如果不是输入层,inputs会改变
            # 上一层的输出就是这一层的输入
            inputs = [neuron['output'] for neuron in network[i - 1]]
        for neuron in network[i]:
            for j in range(len(inputs)):
                # 本身权值加上误差,从而更新
                neuron['weights'][j] += l_rate * neuron['responsibility'] * inputs[j]
            # 最后一个权值是偏置的权值,则默认输入为1
            neuron['weights'][-1] += l_rate * neuron['responsibility']


# 根据指定的训练周期训练网络
def train_network(network, train, l_rate, n_epoch, n_outputs):
    for epoch in range(n_epoch):
        sum_error = 0
        for row in train:
            outputs = forward_propagate(network, row)
            expected = [0 for i in range(n_outputs)]
            expected[row[-1]] = 1
            sum_error += sum([(expected[i]-outputs[i])**2 for i in range(len(expected))])
            backward_propagate_error(network, expected)
            update_weights(network, row, l_rate)
        print('>周期=%d, 误差=%.3f' % (epoch, sum_error))


def predict(network, row):
    outputs = forward_propagate(network, row)
    # 找到最大输出的位置
    return outputs.index(max(outputs))


if __name__ == '__main__':
    # 测试BP网络
    seed(2)

    dataset = [[1, 1, 0],
               [1, 0, 1],
               [0, 1, 1],
               [0, 0, 0]]
    n_inputs = len(dataset[0]) - 1
    n_outputs = len(set([row[-1] for row in dataset]))
    network = initialize_network(n_inputs, 2, n_outputs)
    train_network(network, dataset, 0.5, 20000, n_outputs)
    for layer in network:
        print(layer)
    for row in dataset:
        prediction = predict(network, row)
        print('预期值=%d, 实际输出值=%d' % (row[-1], prediction))

输出:

>周期=19997, 误差=0.001
>周期=19998, 误差=0.001
>周期=19999, 误差=0.001
[{'weights': [7.712477744545061, 7.7440900975746905, -3.5650021384039166], 'output': 0.02751936416589607, 'responsibility': -8.376641916462031e-05}, {'weights': [5.8564929714867615, 5.86347099793969, -8.960096811842467], 'output': 0.00012841729893459846, 'responsibility': 4.229813720805575e-07}]
[{'weights': [-9.737063526539211, 10.247803365255386, 4.6152795787843885], 'output': 0.987239489131048, 'responsibility': 0.00016075283551528197}, {'weights': [9.737461040040083, -10.24823169595781, -4.615466538222714], 'output': 0.012758292571173627, 'responsibility': -0.00016069731064246199}]
预期值=0, 实际输出值=0
预期值=1, 实际输出值=1
预期值=1, 实际输出值=1
预期值=0, 实际输出值=0

7.利用BP算法预测小麦品种的分类

作为有监督学习的算法代表 ,BP 算法有两大用途 , 一是离散输出用作分类 , 二是连续输出用作回归 。

有监督学习算法都要用到训练集。这里我们采用的是加州大学埃文分校(UCI)的机器学习数据仓库,该仓库维护了大约300多个机器学习的常用数据集。本次使用的数据集是小麦种子数据。该数据集把小麦种子分为三个品类:Canadian,Kama和Rosa,分别用数字1、2和3表示。评判的依据是小麦种子的7个特征,它们依次是:面积(area, A A A)、周长(perimeter, P P P)、紧密度(compactness, C = 4 π A / P 2 C = 4πA/P^2 C=4πA/P2)、麦粒核的长度(length of kernel )、麦粒核的宽度(width of kernel)、偏度系数(asymmetry coefficient)、麦粒槽长度(length of kernel groove)。这个数据集合共有210条数据,下面是从数据集合中随机抽取的6条数据。

本例中的小麦种子,共有7个特征,所以输入层就设计为7个神经元。因为我们的输出是小麦的三个分类,因此输出层的神经元个数就设定为3。现在主要的工作集中在如何设计合理的隐含层。为简单起见,这里暂时仅设计一个隐含层,该层中的神经元个数为5。这样的设定其实并没有太多的道理可言,更多凭借的是设计者的(调参)经验,它们可被视为一种超参数。

为了验证算法的正确性,我们利用交叉验证的方法,把 210 个数据样本等分为 5 份,训练集和测试集彼此轮流互换,最后计算出的误差分数以其大小作为衡量算法准确性的度量(自然,这个值越小越好)。

"""
BP算法在小麦种子分类中的应用
"""

from random import seed
from random import randrange
from random import random
from csv import reader
from math import exp


# 数据读取
class Database():
    def __init__(self, db_file):
        self.filename = db_file
        self.dataset = list()

    # 导入CSV 文件
    def load_csv(self):
        with open(filename, 'r') as file:
            csv_reader = reader(file)
            for row in csv_reader:
                if not row:  # 判定是否有空行,如有,则跳入到下一行
                    continue
                self.dataset.append(row)
#        print(self.dataset)

    # 将n-1列的属性字符串列转换为浮点数,第n列为分类的类别
    def dataset_str_to_float(self):
        col_len = len(self.dataset[0]) - 1
        for row in self.dataset:
            for column in range(col_len):
                row[column] = float(row[column].strip())

    # 将最后一列(n)的类别,转换为整型,并提取有多少个类(最后一列就是实际类型)
    def str_column_to_int(self, column):
        class_values = [row[column] for row in self.dataset]  # 读取指定列的数字
        unique = set(class_values)  # 用集合来合并类
        lookup = dict()
        for i, value in enumerate(unique):
            lookup[value] = i
        for row in self.dataset:
            row[column] = lookup[row[column]]

    # 找到每一列(属性)的最小和最大值
    def dataset_minmax(self):
        self.minmax = list()
        self.minmax = [[min(column), max(column)] for column in zip(*self.dataset)]

    # 将数据集合中的每个(列)属性都规整化到0-1
    def normalize_dataset(self):
        self.dataset_minmax()
        for row in self.dataset:
            for i in range(len(row)-1):
                row[i] = (row[i] - self.minmax[i][0]) / (self.minmax[i][1] - self.minmax[i][0])

    def get_dataset(self):
        # 构建训练数据
        self.load_csv()
        self.dataset_str_to_float()
        self.str_column_to_int(len(self.dataset[0])-1)
        self.normalize_dataset()
        return self.dataset


# BP网络训练
class BP_Network():
    # 初始化神经网络
    def __init__(self, n_inputs, n_hidden, n_outputs):
        self.n_inputs = n_inputs
        self.n_hidden = n_hidden
        self.n_outputs = n_outputs
        self.network = list()
        hidden_layer = [{'weights': [random() for i in range(self.n_inputs + 1)]} for i in range(self.n_hidden)]
        self.network.append(hidden_layer)
        output_layer = [{'weights': [random() for i in range(self.n_hidden + 1)]} for i in range(self.n_outputs)]
        self.network.append(output_layer)

    # 计算神经元的激活值(加权之和)
    def activate(self, weights, inputs):
        activation = weights[-1]
        for i in range(len(weights)-1):
            activation += weights[i] * inputs[i]
        return activation

    # 定义激活函数
    def transfer(self, activation):
        return 1.0 / (1.0 + exp(-activation))

    # 计算神经网络的正向传播
    def forward_propagate(self, row):
        inputs = row
        for layer in self.network:
            new_inputs = []
            for neuron in layer:
                activation = self.activate(neuron['weights'], inputs)
                neuron['output'] = self.transfer(activation)
                new_inputs.append(neuron['output'])
            inputs = new_inputs
        return inputs

    # 计算激活函数的导数
    def transfer_derivative(self, output):
        return output * (1.0 - output)

    # 反向传播误差信息,并将纠偏责任存储在神经元中
    def backward_propagate_error(self, expected):
        for i in reversed(range(len(self.network))):
            layer = self.network[i]
            errors = list()
            if i != len(self.network)-1:
                for j in range(len(layer)):
                    error = 0.0
                    for neuron in self.network[i + 1]:
                        error += (neuron['weights'][j] * neuron['responsibility'])
                    errors.append(error)
            else:
                for j in range(len(layer)):
                    neuron = layer[j]
                    errors.append(expected[j] - neuron['output'])
            for j in range(len(layer)):
                neuron = layer[j]
                neuron['responsibility'] = errors[j] * self.transfer_derivative(neuron['output'])

    # 根据误差,更新网络权重
    def _update_weights(self, row):
        for i in range(len(self.network)):
            inputs = row[:-1]
            if i != 0:
                inputs = [neuron['output'] for neuron in self.network[i - 1]]
            for neuron in self.network[i]:
                for j in range(len(inputs)):
                    neuron['weights'][j] += self.l_rate * neuron['responsibility'] * inputs[j]
                neuron['weights'][-1] += self.l_rate * neuron['responsibility']

    # 根据指定的训练周期训练网络
    def train_network(self, train):
        for epoch in range(self.n_epoch):
            sum_error = 0
            for row in train:
                outputs = self.forward_propagate(row)
                expected = [0 for i in range(self.n_outputs)]
                expected[row[-1]] = 1
                sum_error += sum([(expected[i]-outputs[i])**2 for i in range(len(expected))])
                self.backward_propagate_error(expected)
                self._update_weights(row)
            print('>周期=%d, 误差=%.3f' % (epoch, sum_error))

    # 利用训练好的网络,预测“新”数据
    def predict(self, row):
        outputs = self.forward_propagate(row)
        return outputs.index(max(outputs))

    # 利用随机梯度递减策略,训练网络
    def back_propagation(self, train, test):
        self.train_network(train)
        predictions = list()
        for row in test:
            prediction = self.predict(row)
            predictions.append(prediction)
        return(predictions)

    # 将数据库分割为 n_folds等份
    def cross_validation_split(self, n_folds):
        dataset_split = list()  # 含有划分成n_folds等份的列表的列表
        dataset_copy = list(self.dataset)
        fold_size = int(len(self.dataset) / n_folds)

        for i in range(n_folds):
            fold = list()
            while len(fold) < fold_size:
                # 输出dataset_copy长度内的随机数
                index = randrange(len(dataset_copy))
                fold.append(dataset_copy.pop(index))
            dataset_split.append(fold)
        return dataset_split

    # 用预测正确百分比来衡量正确率
    def accuracy_metric(self, actual, predicted):
        correct = 0
        for i in range(len(actual)):
            if actual[i] == predicted[i]:
                correct += 1
        return correct / float(len(actual)) * 100.0

    # 用每一个交叉分割的块(训练集合,试集合)来评估BP算法
    def evaluate_algorithm(self, dataset, n_folds, l_rate, n_epoch):
        self.l_rate = l_rate
        self.n_epoch = n_epoch
        self.dataset = dataset
        folds = self.cross_validation_split(n_folds)
        scores = list()
        for fold in folds:  # 数据一等份一等份来
            train_set = list(folds)
            train_set.remove(fold)  # 移出这等份
            # sum函数的本意是求和,但在一些特殊的场景下,它还可以完成连接可迭代对象的功能 。
            # 完成数据的合并
            train_set = sum(train_set, [])  # 剩下的几等份合并
            test_set = list()
            for row in fold:  # 开始的一等份生成测试集合,并把最后的实际结果设置为None
                row_copy = list(row)
                test_set.append(row_copy)  # 是添加的本身
                row_copy[-1] = None  # 改变了本身的最后一个元素
            predicted = self.back_propagation(train_set, test_set)  # 通过训练集合训练后的神经网络,再通过测试集合得到预测值
            actual = [row[-1] for row in fold]  # 这是真实值
            accuracy = self.accuracy_metric(actual, predicted)  # 通过真实值和预测值评估神经网络
            scores.append(accuracy)
        return scores


if __name__ == '__main__':
    # 设置随机种子
    seed(2)
    # 构建训练数据
    filename = 'data/data110290/seeds_dataset.csv'
    db = Database(filename)
    dataset = db.get_dataset()
    # 设置网络初始化参数
    n_inputs = len(dataset[0]) - 1
    n_hidden = 5
    n_outputs = len(set([row[-1] for row in dataset]))
    BP = BP_Network(n_inputs, n_hidden, n_outputs)
    l_rate = 0.3
    n_folds = 5
    n_epoch = 500
    scores = BP.evaluate_algorithm(dataset, n_folds, l_rate, n_epoch)
    print('评估算法正交验证得分: %s' % scores)
    print('平均准确率: %.3f%%' % (sum(scores)/float(len(scores))))

输出:

>周期=0, 误差=162.603
>周期=1, 误差=110.506
>周期=2, 误差=105.255
...
>周期=498, 误差=2.599
>周期=499, 误差=2.598
评估算法正交验证得分: [95.23809523809523, 90.47619047619048, 97.61904761904762, 97.61904761904762, 97.61904761904762]
平均准确率: 95.714%

8.个人介绍

CSDN地址:https://blog.csdn.net/weixin_43267897?spm=1001.2101.3001.5343

Github地址:https://github.com/KHB1698

我在AI Studio上获得白银等级,点亮2个徽章,来互关呀~ https://aistudio.baidu.com/aistudio/personalcenter/thirdview/791590

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值