windows11+wsl2+ubuntu+cuda+cudnn+vscode+pytorch深度学习环境解决方案

本文详细介绍如何在Windows 11上通过WSL2配置Linux环境,包括安装步骤、启用Linux子系统、GPU驱动和CUDA/CUDNN工具链的设置,助力开发者高效进行深度学习项目。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是一篇关于windows11的深度学习环境解决方案,如果你的电脑是win10系统,建议升级到最新版的win10,或直接安装windows11,官网地址:https://www.microsoft.com/zh-cn/software-download/windows11

  • 首先深度学习为什么要使用linux,这是知乎给的答案:https://www.zhihu.com/question/263666539
  • 为什么使用wsl2
    • WSL是适用于Linux的Windows子系统,可让开发人员按原样运行GNU/Linux环境-包括大多数命令行工具、实用工具和应用程序-且不会产生传统虚拟机或双启动设置开销。
    • WSL2相对WSL1提高文件系统性能,且支持全系统调用兼容性。WSL 2 使用最新、最伟大的虚拟化技术在轻量级实用程序虚拟机 (VM) 中运行 Linux 内核。但是,WSL 2 不是传统的 VM 体验。
    • 最重要的是不用装双系统,也能得到很好的GPU训练体验!

wsl2安装

Microsoft英文版文档网址:https://docs.microsoft.com/en-us/windows/wsl/install-manual官网已经介绍的很详细了,总结就是以下几步操作。

  1. 用管理员身份打开PowerShell.(打开方法见视频),然后在PowerShell中,输入下面的命令。
dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /all /norestart
  1. 启动虚拟机给功能。同样在PoweShell中输入下面的命令。输入完命令后,要重启一下电脑,然后再进行第三步。
dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /norestart
  1. 下载Linux内核更新包。下载地址:https://wslstorestorage.blob.core.windows.net/wslblob/wsl_update_x64.msi

  2. 将WSL2设置为默认版本。打开 PowerShell,然后在安装新的 Linux 发行版时运行以下命令,将 WSL 2 设置为默认版本,命令如下。

wsl --set-default-version 2

安装您选择的 Linux 发行版

打开Microsoft Store并选择您喜欢的 Linux 发行版。
本文使用的是Ubuntu 20.04 LTS直接点击安装即可,windows11做了优化下载速度也很快。

在这里插入图片描述
安装完成后,就可以使用了。如果是首次进入需要你设置用户名和密码。当进入系统后,可以使用下面的命令来查看当前Ubuntu的版本。

wslfetch

在这里插入图片描述

安装图形桌面系统(非必要)

windows显卡驱动安装

!!!在windows上安装适配wsl的显卡驱动(以前安装驱动了的也要安装,会覆盖原来的),安装网址:
https://developer.nvidia.com/cuda/wsl/download
在这里插入图片描述
在 windows 的cmd命令行中输入nvidia-smi有显卡信息说明安装成功。
在这里插入图片描述

在 ubuntu 中安装 cuda toolkit

  1. 在ubuntu的命令行中依次输入以下四句命令。(这些命令是官网中“Setting up CUDA Toolkit”部分的教程)
    注意:命令中的11-1根据需要版本的不同自行调整(见上面的注意)。例如:安装11.0只需要把后续的11-1改为11-0即可。
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/7fa2af80.pub
sudo sh -c 'echo "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/cuda.list'
sudo apt-get update
sudo apt-get install -y cuda-toolkit-11-1
  1. 第一步完成且没有错误之后,配置环境变量,在ubuntu的命令行中输入,
sudo gedit ~/.bashrc
  1. 在打开的文件中,按i进入编辑模式,并在文件最底部添加:
export PATH=/usr/local/cuda-11.1/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11.1/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
  1. 保存并退出,回到ubuntu命令行,输入
source ~/.bashrc

验证: 在ubuntu 命令行中输入 nvcc -V ,能够输出 cuda toolkit 信息即可。(如上所述,这里看到的是“运行时版本”)

在 ubuntu 中安装 cudnn

下载后得到的文件夹是cudnn-11.2-linux-x64-v8.1.0.77.arj,这里后缀名是arj,原因不详(我是在Windows下载的),但是可以直接把后缀改成tgz,之后移动到Ubuntu对应的文件夹(Windows的盘符比如说D盘在WSL-Ubuntu里面就是/mnt/d/),移动到Ubuntu的里面(此处我移动到了Ubuntu的Downloads文件夹,以下操作也是在Downloads文件夹下进行操作)就可以进行Cudnn文件的安装(其实是复制):

tar -zxvf cudnn-11.2-linux-x64-v8.1.0.77.tgz
sudo cp cuda/include/cudnn.h /usr/local/cuda-11.1/include/
sudo cp cuda/lib64/libcudnn* /usr/local/cuda-11.1/lib64/
sudo cp /usr/local/cuda-11.1/lib64/libcusolver.so.11 /usr/local/cuda-11.1/lib64/libcusolver.so.10
sudo chmod +x /usr/local/cuda/include/cudnn.h
sudo chmod +x /usr/local/cuda/lib64/libcudnn*

未完,之后更新…

### 配置 Windows 11WSL2Ubuntu 发行版与 Visual Studio Code 的集成 要在 Windows 11 系统中实现 WSL2Ubuntu 发行版与 Visual Studio Code 的无缝集成,可以按照以下方法完成: #### 1. 安装必要的软件 确保已安装最新版本的 Visual Studio Code 和适用于 Linux 的扩展包。通过 Microsoft Store 或官方文档指南安装 WSL2 并启用其支持功能[^4]。 #### 2. 启动 WSL2 中的 Ubuntu 在 PowerShell 或命令提示符中运行 `wsl --install` 命令来初始化 WSL2 及默认发行版(通常是 Ubuntu)。如果已经安装了特定版本如 Ubuntu 18.04,则无需重新安装[^1]。 #### 3. 设置 VSCode 远程开发环境 - 打开 VSCode,进入 Extensions Marketplace (`Ctrl+Shift+X`) 搜索 “Remote – WSL”,然后点击安装该插件。 - 安装完成后重启应用程序以应用更改。 #### 4. 使用 VSCode 打开 WSL 文件夹 可以通过两种方式启动基于 WSL 的项目工作区: - 方法一:按快捷键组合 `Ctrl+K`, 接着按下 `Ctrl+W` 来切换到 WSL 工作空间; - 方法二:直接从终端内部执行命令 `code .` 将当前目录加载至编辑器实例内[^2]。 #### 5. 调试 C/C++ 应用程序 为了能够在 WSL 下顺利编译并调试 C/C++ 类型的应用程序,请先确认 GCC 编译工具链已被正确预设好。接着参照官方说明调整 launch.json 参数配置文件以便适配目标平台特性需求[^5]。 ```json { "version": "0.2.0", "configurations": [ { "name": "(gdb) Launch", "type": "cppdbg", "request": "launch", "program": "${workspaceFolder}/a.out", "args": [], "stopAtEntry": false, "cwd": "${fileDirname}", "environment": [], "externalConsole": true, "MIMode": "gdb", "miDebuggerPath": "/usr/bin/gdb", "setupCommands": [ { "description": "Enable pretty-printing for gdb", "text": "-enable-pretty-printing", "ignoreFailures": true } ], "preLaunchTask": "build" } ] } ``` 上述 JSON 片段定义了一个基本的 GDB 调试会话模板,其中包含了若干重要字段解释如下表所示: | 字段名 | 描述 | |------------------|----------------------------------------------------------------------| | name | 显示于 UI 列表中的名称 | | type | 表明使用的调试协议 | | request | 请求模式 | | program | 待调试可执行文件路径 | | args | 提供给被测程序的参数数组 | | stopAtEntry | 是否暂停于入口处 | | cwd | 当前工作目录 | | environment | 自定义环境变量 | | externalConsole | 控制台显示选项 | | MIMode | MI(Machine Interface)模式下的调试器类型 | | miDebuggerPath | 对应调试器的实际位置 | #### 注意事项 当遇到某些特定场景比如 GPU 加速计算框架 PyTorch CUDA 支持时可能还需要额外处理驱动兼容性和库链接等问题。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值