使用官方代码打印yolov8 PyTorch模型结构

理解模型结构的重要性

在进行深度学习模型的开发时,一个清晰的模型结构有助于理解网络是如何从输入数据中提取特征,并执行分类或回归任务的。对于如YOLOv8这样的复杂模型来说,理解每个层的作用和相互间的连结尤为重要。

下面是我整合的代码:

import contextlib
import glob
import math
import re
import urllib
from copy import deepcopy
from pathlib import Path
import yaml
import torch
from torch import nn
from ultralytics.utils.tal import dist2bbox

from ultralytics.utils import downloads
from ultralytics.nn.modules import RTDETRDecoder, Segment, Pose, OBB, Concat, ResNetLayer, HGBlock, HGStem, AIFI, BottleneckCSP, C1, C2, C3, C3Ghost, C3x, RepC3, C3TR, C2f, DWConvTranspose2d, Focus, Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, DFL

FILE = Path(__file__).resolve()
ROOT = FILE.parents[1]  # YOLO



class Detect(nn.Module):
    """YOLOv8 Detect head for detection models."""

    dynamic = False  # force grid reconstruction
    export = False  # export mode
    shape = None
    anchors = torch.empty(0)  # init
    strides = torch.empty(0)  # init

    def __init__(self, nc=80, ch=()):
        """Initializes the YOLOv8 detection layer with specified number of classes and channels."""
        super().__init__()
        self.nc = nc  # number of classes
        self.nl = len(ch)  # number of detection layers
        self.reg_max = 16  # DFL channels (ch[0] // 16 to scale 4/8/12/16/20 for n/s/m/l/x)
        self.no = nc + self.reg_max * 4  # number of outputs per anchor
        self.stride = torch.zeros(self.nl)  # strides computed during build
        c2, c3 = max((16, ch[0] // 4, self.reg_max * 4)), max(ch[0], min(self.nc, 100))  # channels
        self.cv2 = nn.ModuleList(
            nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch
        )
        self.cv3 = nn.ModuleList(nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
        self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()

    def forward(self, x):

        print("888888888888",self.nl)
        print("999999999999",self.stride)
        print(self.strides)

        print(torch.zeros(3))



        """Concatenates and returns predicted bounding boxes and class probabilities."""
        # x is a list of tensors from previous layers
        outputs = []  # You can store each output here if you don't want to print immediately
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
            # Print the shape after processing with cv2 and cv3
            print(f'Layer {i + 28} output shape: {x[i].shape}')  # +18 because the first layer to print is 18
            outputs.append(x[i].detach())




        # import time
        #
        # time.sleep(9000)


        if self.training:  # Training path
            return x

        # Inference path
        shape = x[0].shape  # BCHW
        x_cat = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2)
        # if self.dynamic or self.shape != shape:
        #     self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
        #
        #     self.shape = shape

        if self.export and self.format in ("saved_model", "pb", "tflite", "edgetpu", "tfjs"):  # avoid TF FlexSplitV ops
            box = x_cat[:, : self.reg_max * 4]
            cls = x_cat[:, self.reg_max * 4:]
        else:
            box, cls = x_cat.split((self.reg_max * 4, self.nc), 1)
        dbox = self.decode_bboxes(box)

        if self.export and self.format in ("tflite", "edgetpu"):
            # Precompute normalization factor to increase numerical stability
            # See https://github.com/ultralytics/ultralytics/issues/7371
            img_h = shape[2]
            img_w = shape[3]
            img_size = torch.tensor([img_w, img_h, img_w, img_h], device=box.device).reshape(1, 4, 1)
            norm = self.strides / (self.stride[0] * img_size)
            dbox = dist2bbox(self.dfl(box) * norm, self.anchors.unsqueeze(0) * norm[:, :2], xywh=True, dim=1)

        y = torch.cat((dbox, cls.sigmoid()), 1)






        return y if self.export else (y, x)

    def bias_init(self):
        """Initialize Detect() biases, WARNING: requires stride availability."""
        m = self  # self.model[-1]  # Detect() module
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
        # ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # nominal class frequency
        for a, b, s in zip(m.cv2, m.cv3, m.stride):  # from
            a[-1].bias.data[:] = 1.0  # box
            b[-1].bias.data[: m.nc] = math.log(5 / m.nc / (640 / s) ** 2)  # cls (.01 objects, 80 classes, 640 img)

    def decode_bboxes(self, bboxes):
        """Decode bounding boxes."""
        return dist2bbox(self.dfl(bboxes), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides



def make_divisible(x, divisor):
    """
    Returns the nearest number that is divisible by the given divisor.

    Args:
        x (int): The number to make divisible.
        divisor (int | torch.Tensor): The divisor.

    Returns:
        (int): The nearest number divisible by the divisor.
    """
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor


def url2file(url):
    """Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt."""
    return Path(clean_url(url)).name


def clean_url(url):
    """Strip auth from URL, i.e. https://url.com/file.txt?auth -> https://url.com/file.txt."""
    url = Path(url).as_posix().replace(":/", "://")  # Pathlib turns :// -> :/, as_posix() for Windows
    return urllib.parse.unquote(url).split("?")[0]  # '%2F' to '/', split https://url.com/file.txt?auth


def colorstr(*input):

    *args, string = input if len(input) > 1 else ("blue", "bold", input[0])  # color arguments, string
    colors = {
        "black": "\033[30m",  # basic colors
        "red": "\033[31m",
        "green": "\033[32m",
        "yellow": "\033[33m",
        "blue": "\033[34m",
        "magenta": "\033[35m",
        "cyan": "\033[36m",
        "white": "\033[37m",
        "bright_black": "\033[90m",  # bright colors
        "bright_red": "\033[91m",
        "bright_green": "\033[92m",
        "bright_yellow": "\033[93m",
        "bright_blue": "\033[94m",
        "bright_magenta": "\033[95m",
        "bright_cyan": "\033[96m",
        "bright_white": "\033[97m",
        "end": "\033[0m",  # misc
        "bold": "\033[1m",
        "underline": "\033[4m",
    }
    return "".join(colors[x] for x in args) + f"{string}" + colors["end"]


def check_suffix(file="yolov8n.pt", suffix=".pt", msg=""):
    """Check file(s) for acceptable suffix."""
    if file and suffix:
        if isinstance(suffix, str):
            suffix = (suffix,)
        for f in file if isinstance(file, (list, tuple)) else [file]:
            s = Path(f).suffix.lower().strip()  # file suffix
            if len(s):
                assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}, not {s}"


def check_yolov5u_filename(file: str, verbose: bool = True):
    """Replace legacy YOLOv5 filenames with updated YOLOv5u filenames."""
    if "yolov3" in file or "yolov5" in file:
        if "u.yaml" in file:
            file = file.replace("u.yaml", ".yaml")  # i.e. yolov5nu.yaml -> yolov5n.yaml
        elif ".pt" in file and "u" not in file:
            original_file = file
            file = re.sub(r"(.*yolov5([nsmlx]))\.pt", "\\1u.pt", file)  # i.e. yolov5n.pt -> yolov5nu.pt
            file = re.sub(r"(.*yolov5([nsmlx])6)\.pt", "\\1u.pt", file)  # i.e. yolov5n6.pt -> yolov5n6u.pt
            file = re.sub(r"(.*yolov3(|-tiny|-spp))\.pt", "\\1u.pt", file)  # i.e. yolov3-spp.pt -> yolov3-sppu.pt
            if file != original_file and verbose:
                print(
                    f"PRO TIP 💡 Replace 'model={original_file}' with new 'model={file}'.\nYOLOv5 'u' models are "
                    f"trained with https://github.com/ultralytics/ultralytics and feature improved performance vs "
                    f"standard YOLOv5 models trained with https://github.com/ultralytics/yolov5.\n"
                )
    return file


def check_file(file, suffix="", download=True, hard=True):
    """Search/download file (if necessary) and return path."""
    check_suffix(file, suffix)  # optional
    file = str(file).strip()  # convert to string and strip spaces
    file = check_yolov5u_filename(file)  # yolov5n -> yolov5nu
    if (
            not file
            or ("://" not in file and Path(file).exists())  # '://' check required in Windows Python<3.10
            or file.lower().startswith("grpc://")
    ):  # file exists or gRPC Triton images
        return file
    elif download and file.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):  # download
        url = file  # warning: Pathlib turns :// -> :/
        file = url2file(file)  # '%2F' to '/', split https://url.com/file.txt?auth
        if Path(file).exists():
            print(f"Found {clean_url(url)} locally at {file}")  # file already exists
        else:
            downloads.safe_download(url=url, file=file, unzip=False)
        return file
    else:  # search
        files = glob.glob(str(ROOT / "**" / file), recursive=True) or glob.glob(str(ROOT.parent / file))  # find file
        if not files and hard:
            raise FileNotFoundError(f"'{file}' does not exist")
        elif len(files) > 1 and hard:
            raise FileNotFoundError(f"Multiple files match '{file}', specify exact path: {files}")
        return files[0] if len(files) else []  # return file


def check_yaml(file, suffix=(".yaml", ".yml"), hard=True):
    """Search/download YAML file (if necessary) and return path, checking suffix."""
    return check_file(file, suffix, hard=hard)


def yaml_load(file="data.yaml", append_filename=False):
    """
    Load YAML data from a file.

    Args:
        file (str, optional): File name. Default is 'data.yaml'.
        append_filename (bool): Add the YAML filename to the YAML dictionary. Default is False.

    Returns:
        (dict): YAML data and file name.
    """
    assert Path(file).suffix in (".yaml", ".yml"), f"Attempting to load non-YAML file {file} with yaml_load()"
    with open(file, errors="ignore", encoding="utf-8") as f:
        s = f.read()  # string

        # Remove special characters
        if not s.isprintable():
            s = re.sub(r"[^\x09\x0A\x0D\x20-\x7E\x85\xA0-\uD7FF\uE000-\uFFFD\U00010000-\U0010ffff]+", "", s)

        # Add YAML filename to dict and return
        data = yaml.safe_load(s) or {}  # always return a dict (yaml.safe_load() may return None for empty files)
        if append_filename:
            data["yaml_file"] = str(file)
        return data


def guess_model_scale(model_path):
    """
    Takes a path to a YOLO model's YAML file as input and extracts the size character of the model's scale. The function
    uses regular expression matching to find the pattern of the model scale in the YAML file name, which is denoted by
    n, s, m, l, or x. The function returns the size character of the model scale as a string.

    Args:
        model_path (str | Path): The path to the YOLO model's YAML file.

    Returns:
        (str): The size character of the model's scale, which can be n, s, m, l, or x.
    """
    with contextlib.suppress(AttributeError):
        import re

        return re.search(r"yolov\d+([nslmx])", Path(model_path).stem).group(1)  # n, s, m, l, or x
    return ""


def yaml_model_load(path):
    """Load a YOLOv8 model from a YAML file."""
    import re

    path = Path(path)
    if path.stem in (f"yolov{d}{x}6" for x in "nsmlx" for d in (5, 8)):
        new_stem = re.sub(r"(\d+)([nslmx])6(.+)?$", r"\1\2-p6\3", path.stem)
        print(f"WARNING ⚠️ Ultralytics YOLO P6 models now use -p6 suffix. Renaming {path.stem} to {new_stem}.")
        path = path.with_name(new_stem + path.suffix)

    unified_path = re.sub(r"(\d+)([nslmx])(.+)?$", r"\1\3", str(path))  # i.e. yolov8x.yaml -> yolov8.yaml
    yaml_file = check_yaml(unified_path, hard=False) or check_yaml(path)
    d = yaml_load(yaml_file)  # model dict
    d["scale"] = guess_model_scale(path)
    d["yaml_file"] = str(path)
    return d


def parse_model(d, ch, verbose=True):  # model_dict, input_channels(3)

    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast

    # Args
    max_channels = float("inf")
    nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
    if scales:
        scale = d.get("scale")
        if not scale:
            scale = tuple(scales.keys())[0]
            print(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        depth, width, max_channels = scales[scale]

    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            print(f"{colorstr('activation:')} {act}")  # print

    if verbose:
        print(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    # print("ch -------------- : ",ch)
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        m = getattr(torch.nn, m[3:]) if "nn." in m else globals()[m]  # get module
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    args[j] = locals()[a] if a in locals() else ast.literal_eval(a)

        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in (
                Classify,
                Conv,
                ConvTranspose,
                GhostConv,
                Bottleneck,
                GhostBottleneck,
                SPP,
                SPPF,
                DWConv,
                Focus,
                BottleneckCSP,
                C1,
                C2,
                C2f,
                C3,
                C3TR,
                C3Ghost,
                nn.ConvTranspose2d,
                DWConvTranspose2d,
                C3x,
                RepC3,
        ):
            c1, c2 = ch[f], args[0]
            # print("c2 -------------- : ",c2)
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)

            # print("c2 m -------------- : ",c2)

            args = [c1, c2, *args[1:]]
            if m in (BottleneckCSP, C1, C2, C2f, C3, C3TR, C3Ghost, C3x, RepC3):
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is AIFI:
            args = [ch[f], *args]
        elif m in (HGStem, HGBlock):
            c1, cm, c2 = ch[f], args[0], args[1]
            args = [c1, cm, c2, *args[2:]]
            if m is HGBlock:
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in (Detect, Segment, Pose, OBB):
            args.append([ch[x] for x in f])
            if m is Segment:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace("__main__.", "")  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i, f, t  # attach index, 'from' index, type
        if verbose:
            print(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}")  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)


cfg = "yolov8x-p2.yaml"
yaml = cfg if isinstance(cfg, dict) else yaml_model_load(cfg)  # cfg dict

model, save = parse_model(deepcopy(yaml), ch=3, verbose=True)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lindsayshuo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值