目录
一般高斯情况下Fisher信息阵公式
一般高斯情况时,即:
那么x的概率密度函数可以表示为:
其中:
其中μ(θ)和C(θ)都存在待估计的参数,且C(θ)是对称矩阵
那么一般高斯情况时,Fisher信息矩阵的第i,j个元素,可以表示为:
公式推导前需要整理的公式和性质
性质1:自相关矩阵和其逆矩阵都是对称矩阵
是对称矩阵,且也是对称矩阵
具体可以参考:
https://blog.csdn.net/weixin_43270276/article/details/120560885?spm=1001.2014.3001.5501
性质2:行列式求导公式
性质3:逆矩阵求导公式
具体参考:
笔记:矩阵行列式求导以及矩阵的逆的求导_DengTseng的博客-CSDN博客_矩阵行列式求导
性质4:向量求迹(Tr)
对于相同长度的矢量m和n,那么存在:
性质5:对称阵的计算公式
其中:
性质6:正态分布的奇数阶矩为0
参考
标准正态分布k阶原点矩公式_犹有傲霜枝的博客-CSDN博客_正态分布的k阶原点矩
证明过程
第一步:写出包含待估计量的似然函数
第二步:对似然函数求对数
第三步:求一阶导数
上式计算时,分三部分,显然第一项不包含待估计参数θ,所以该项对所有待估计参数的一阶导数都为0。因此重点要求第二和第三项对待估计参数的一阶导数。
第二项对待估计参数的一阶导数:
由于是N*N维矩阵,因此也是N*N维矩阵,根据上述性质2,得到:
第三项对待估计参数的一阶导数:
而其中:
因此第三项对待估计参数的一阶导数可以表示为:
因此,最终一阶导数可以表示为:
第四步:求Fisher矩阵
利用统计信号处理基础(3-23)性质,得到:
为了简化运算过程,令:
因此:
于是可以得到:
利用性质6,可以得到上式中:
因此,可以稍微简化为:
上式中的第一项不需要化简,而第二第三项的化简,需要用到性质3和性质4,具体为:
同理:
因此,第二第三项可以化简为:
第四项的化简,需要用到性质5
第五项的化简:
由于:和都是1*1的元素,因此:
于是:
上述化简代入后,最终可以得到:
证明完毕。