题目描述:
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意: 给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1 阶 + 1 阶
2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1 阶 + 1 阶 + 1 阶
1 阶 + 2 阶
2 阶 + 1 阶
解题思路1: 递归思路
- 类比之前 跳台阶,爬到 n 阶等价于 = 爬到 n-1 阶然后再爬一个楼梯 + 爬到n-2 阶再爬两个楼梯
- 需要注意一些起始、特殊情况,如n=0、1时如何处理
代码1:
class Solution(object):
def climbStairs(self, n):
if n == 1:
return 1
elif n == 2:
return 2
else:
return self.climbStairs(n-1) + self.climbStairs(n-2)
s = Solution()
n = 10
print(s.climbStairs(n))
超出时间复杂度
改进代码1: 动态规划
class Solution(object):
def climbStairs(self, n):
dp = [0]*(n+1)
dp[0] = 0
dp[1] = 1
if n >= 2: # 当n==1时,其不存在
dp[2] = 2
for i in range(3, n+1):
dp[i] = dp[i-1] + dp[i-2]
return dp[n]
s = Solution()
n = 10
print(s.climbStairs(n))
参考链接: