pytorch_transform

在这里插入图片描述
在这里插入图片描述

Normalize

在这里插入图片描述

数据增强

对训练集进行变换,使训练集更丰富,增强模型泛化能力

裁剪

中心裁剪

在这里插入图片描述

随机裁剪

在这里插入图片描述
在这里插入图片描述

随机大小长宽比裁剪

在这里插入图片描述

四个角及中心裁剪

在这里插入图片描述

翻转

左右上下翻转

在这里插入图片描述

旋转

在这里插入图片描述

边缘填充

在这里插入图片描述

调整亮度 对比度 饱和度 和色相

在这里插入图片描述

彩色图转为灰度图

在这里插入图片描述

仿射变换

在这里插入图片描述
在这里插入图片描述

随机遮挡(常用)

在这里插入图片描述

自定义操作(匿名函数)

transform挑选

在这里插入图片描述

自定义transforms

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

# -*- coding: utf-8 -*-
"""
# @file name  : my_transforms.py
# @brief      : 自定义一个transforms方法
"""
import os
import numpy as np
import torch
import random
import torchvision.transforms as transforms
from PIL import Image
from matplotlib import pyplot as plt
from torch.utils.data import DataLoader
from tools.my_dataset import RMBDataset
from tools.common_tools import transform_invert


def set_seed(seed=1):
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)


set_seed(1)  # 设置随机种子

# 参数设置
MAX_EPOCH = 10
BATCH_SIZE = 1
LR = 0.01
log_interval = 10
val_interval = 1
rmb_label = {"1": 0, "100": 1}


class AddPepperNoise(object):
    """增加椒盐噪声
    Args:
        snr (float): Signal Noise Rate
        p (float): 概率值,依概率执行该操作
    """

    def __init__(self, snr, p=0.9):
        assert isinstance(snr, float) or (isinstance(p, float))
        self.snr = snr
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): PIL Image
        Returns:
            PIL Image: PIL image.
        """
        if random.uniform(0, 1) < self.p:
            img_ = np.array(img).copy()
            h, w, c = img_.shape
            signal_pct = self.snr
            noise_pct = (1 - self.snr)
            mask = np.random.choice((0, 1, 2), size=(h, w, 1), p=[signal_pct, noise_pct/2., noise_pct/2.])
            mask = np.repeat(mask, c, axis=2)
            img_[mask == 1] = 255   # 盐噪声白色
            img_[mask == 2] = 0     # 椒噪声黑色
            return Image.fromarray(img_.astype('uint8')).convert('RGB')
        else:
            return img


# ============================ step 1/5 数据 ============================
split_dir = os.path.join("..", "data", "rmb_split")
train_dir = os.path.join(split_dir, "train")
valid_dir = os.path.join(split_dir, "valid")

norm_mean = [0.485, 0.456, 0.406]
norm_std = [0.229, 0.224, 0.225]


train_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    AddPepperNoise(0.9, p=0.5),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std),
])

valid_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(norm_mean, norm_std)
])

# 构建MyDataset实例
train_data = RMBDataset(data_dir=train_dir, transform=train_transform)
valid_data = RMBDataset(data_dir=valid_dir, transform=valid_transform)

# 构建DataLoder
train_loader = DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)
valid_loader = DataLoader(dataset=valid_data, batch_size=BATCH_SIZE)


# ============================ step 5/5 训练 ============================
for epoch in range(MAX_EPOCH):
    for i, data in enumerate(train_loader):

        inputs, labels = data   # B C H W

        img_tensor = inputs[0, ...]     # C H W
        img = transform_invert(img_tensor, train_transform)
        plt.imshow(img)
        plt.show()
        plt.pause(0.5)
        plt.close()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值