以下是一个简单的算法,用来计算凸包,并根据凸包的坐标来计算最小外接矩形
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#define _USE_MATH_DEFINES
#include <math.h>
using namespace std;
struct Point{
double x,y;
};
double cross(Point a,Point b,Point c){
double x1=b.x-a.x,x2=c.x-a.x;
double y1=b.y-a.y,y2=c.y-a.y;
return x1*y2-x2*y1;
}
bool cmp(Point a,Point b){
if(a.x!=b.x) return a.x<b.x;
return a.y<b.y;
}
vector<Point> convex_hull(vector<Point> &p){
int n=p.size(),k=0;
vector<Point> h(2*n);
sort(p.begin(),p.end(),cmp);
for(int i=0;i<n;i++){
while(k>=2 && cross(h[k-2],h[k-1],p[i])<=0) k--;
h[k++]=p[i];
}
for(int i=n-2,t=k;i>=0;i--){
while(k>t && cross(h[k-2],h[k-1],p[i])<=0) k--;
h[k++]=p[i];
}
h.resize(k-1);
return h;
}
double min_bounding_rectangle(vector<Point> &p){
vector<Point> h=convex_hull(p);
int n=h.size();
double ans=1e20;
for(int i=0;i<n;i++){
int j=(i+1)%n,k=(j+1)%n;
while(cross(h[i],h[j],h[k])<cross(h[i],h[j],h[(k+1)%n])){
k=(k+1)%n;
}
double dx=h[i].x-h[j].x,dy=h[i].y-h[j].y;
double area=fabs(cross(h[i],h[j],h[k]))/sqrt(dx*dx+dy*dy);
ans=min(ans,area);
}
return ans;
}
struct rect //四个点的矩形
{
point first, second, third, fouth;
double area, perimeter, aspect;
};
//4计算最小外接矩形,利用凸包的边进行旋转,返回的rect中包含最小外接矩形的:4个顶点、面积、周长、纵横比
static rect minBoundRect(const std::vector<point> &convexHullCoor, int methodID=0)
{//用来计算给定坐标点集合的最小外接矩形,返回最小外接矩形四个顶点坐标以及面积、周长
//需要返回的外接矩形信息
rect minBoundRect;
//当凸包点数小于3时,直接返回0
if(convexHullCoor.size()<3)
{
point zero;
zero.width=0, zero.height=0;
minBoundRect.first=zero;
minBoundRect.second=zero;
minBoundRect.third=zero;
minBoundRect.fouth=zero;
minBoundRect.area=0;
minBoundRect.perimeter=0; //严格来说两点的周长不为零
minBoundRect.aspect=0; //纵横比
return minBoundRect;
}
//计算方位角
double *pAngle = new double[convexHullCoor.size()];
for(int i=0; i<convexHullCoor.size()-1; i++)
{
pAngle[i] = std::atan2(convexHullCoor[i+1].height-convexHullCoor[i].height,convexHullCoor[i+1].width-convexHullCoor[i].width);
}
//最后一个方位角,利用第一个计算
pAngle[convexHullCoor.size()-1] = std::atan2(convexHullCoor[0].height-convexHullCoor[convexHullCoor.size()-1].height,convexHullCoor[0].width-convexHullCoor[convexHullCoor.size()-1].width);
//对pi/2取余,旋转角度
double *pEdgeAngle = new double[convexHullCoor.size()];
for(int i=0; i<convexHullCoor.size(); i++)
{
pEdgeAngle[i] = fmod(pAngle[i],M_PI/2);
double tmp = fmod(pAngle[i],M_PI/2);
tmp<0? pEdgeAngle[i] = M_PI/2+tmp:pEdgeAngle[i] =tmp;
}
//对pEdgeAngle排序,升序
std::sort(pEdgeAngle,pEdgeAngle+convexHullCoor.size());
//去除重复出现的元素,得到去重之后的数量uniqueNum,即只需要旋转以下角度就可以
int uniqueNum = std::unique(pEdgeAngle,pEdgeAngle+convexHullCoor.size())-pEdgeAngle; //去重函数返回地址为:去重后最后一个不重复元素地址
//得到坐标矩阵
std::vector<std::vector<double>> xy(convexHullCoor.size(),std::vector<double>(2,0));
for(int i=0; i<convexHullCoor.size(); i++)
{
xy[i][0] = convexHullCoor[i].width;
xy[i][1] = convexHullCoor[i].height;
}
double maxValue = DBL_MAX;
double area = DBL_MAX;
double perimeter = DBL_MAX;
double aspect=0;
std::vector<std::vector<double>> rect(4,std::vector<double>(2,0));
//将数据旋转相应角度
std::vector<std::vector<double>> rot(2,std::vector<double>(2,0)); //2×2矩阵,double类型,初始化为0
for(int i=0; i<uniqueNum; i++)
{
//计算rot的值,数据旋转-edgeAngle
rot[0][0] = cos(-pEdgeAngle[i]);
rot[0][1] = sin(-pEdgeAngle[i]);
rot[1][0] = -sin(-pEdgeAngle[i]);
rot[1][1] = cos(-pEdgeAngle[i]);
std::vector<std::vector<double>> xyr = matrixMultiply(xy,rot,convexHullCoor.size(),2,2);
//计算最值,即当前旋转下外接矩形的顶点坐标
double minX = DBL_MAX, minY = DBL_MAX;
double maxX = -DBL_MAX, maxY = -DBL_MAX; //不能用DBL_MIN, DBL_MIN表示最小的正数,坐标可能为负
for(int i=0; i<convexHullCoor.size(); i++)
{
if(xyr[i][0]<minX) minX = xyr[i][0];
if(xyr[i][0]>maxX) maxX = xyr[i][0];
if(xyr[i][1]<minY) minY = xyr[i][1];
if(xyr[i][1]>maxY) maxY = xyr[i][1];
}
//计算矩形的面积、周长以及纵横比
double area_t = (maxX-minX)*(maxY-minY);
double perimeter_t = 2*((maxX-minX)+(maxY-minY));
double aspect_t;
(maxX-minX)>(maxY-minY)? aspect_t=(maxX-minX)/(maxY-minY):aspect_t=(maxY-minY)/(maxX-minX);
//默认取最小面积,即methodID=0,也可以取最小周长
double currentValue=0;
if(methodID==0) currentValue = area_t;
else if(methodID==1) currentValue = perimeter_t;
if(currentValue<maxValue)
{
maxValue = currentValue;
area = area_t;
perimeter = perimeter_t;
aspect = aspect_t;
rect[0][0]=minX, rect[0][1]=minY, rect[1][0]=maxX, rect[1][1]=minY;
rect[2][0]=maxX, rect[2][1]=maxY, rect[3][0]=minX, rect[3][1]=maxY;
//先将rot转置
rot = transpose(rot);
rect = matrixMultiply(rect,rot,4,2,2);//反变换,得到未旋转的坐标
}
}
minBoundRect.area = area;
minBoundRect.perimeter = perimeter;
minBoundRect.first.width = rect[0][0], minBoundRect.first.height=rect[0][1];
minBoundRect.second.width = rect[1][0], minBoundRect.second.height=rect[1][1];
minBoundRect.third.width = rect[2][0], minBoundRect.third.height=rect[2][1];
minBoundRect.fouth.width = rect[3][0], minBoundRect.fouth.height=rect[3][1];
minBoundRect.aspect = aspect;
delete [] pAngle;
delete [] pEdgeAngle;
return minBoundRect;
}
//矩阵乘法, double类型数组
std::vector<std::vector<double>> matrixMultiply(std::vector<std::vector<double>>& a, std::vector<std::vector<double>>& b, int m1, int n1, int n2)
{//m1、n1为矩阵a的行数和列数,n2为矩阵b的列数
std::vector<std::vector<double>> result(m1, std::vector<double>(n2, 0)); // 存储结果的矩阵,初始化为0
for (int i = 0; i < m1; i++) {
for (int j = 0; j < n2; j++) {
for (int k = 0; k < n1; k++) {
result[i][j] += a[i][k] * b[k][j]; // 矩阵乘法公式
}
}
}
return result;
}
//矩阵转置, double类型数组
std::vector<std::vector<double>> transpose(std::vector<std::vector<double>>& matrix)
{
int m = matrix.size(); // 原矩阵行数
int n = matrix[0].size(); // 原矩阵列数
std::vector<std::vector<double>> res(n, std::vector<double>(m)); // 初始化转置矩阵
// 将原矩阵中的每个元素放入对应位置的转置矩阵中
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
res[j][i] = matrix[i][j];
}
}
return res;
}
int main(){
int n;
cin>>n;
vector<Point> p(n);
for(int i=0;i<n;i++){
cin>>p[i].x>>p[i].y;
}
double ans=minBoundRect(p);
cout<<ans<<endl;
return 0;
}
以上代码中,struct Point
定义了一个二维坐标系中的点,cross()
函数用来计算两个向量的叉积,cmp()
函数用来排序,convex_hull()
函数用来计算凸包,min_bounding_rectangle()
函数用来计算凸包的最小外接矩形,最后在main()
函数中输入点的坐标,输出计算结果。
对算法本身进行分析,如对下图所示的边缘区域进行凸包求取的计算。
在此之前先了解交叉积的相关知识:
交叉积可以被定义为:
模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。)
c的长度在数值上等于以a,**b,**夹角为θ组成的平行四边形的面积。
方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)
已知点
a
(
x
1
,
y
1
)
a(x_1,y_1)
a(x1,y1),
b
(
x
2
,
y
2
)
b(x_2,y_2)
b(x2,y2),则叉积的二维坐标表示为:
a
×
b
=
x
1
y
2
−
x
2
y
1
a×b=x_1y_2-x_2y_1
a×b=x1y2−x2y1
上述代码中用到了cross函数来求交叉积(向量积、外积),正是用到了上述公式。
double cross(Point a,Point b,Point c){
double x1=b.x-a.x,x2=c.x-a.x;
double y1=b.y-a.y,y2=c.y-a.y;
return x1*y2-x2*y1;
}
cross函数参数中有三个点a、b、c,组成的向量ab和ac如下图所示:
对于叉积ab×ac
若叉积大于0,则ab逆时针旋转到ac;
若叉积等于0,则a、b、c三点共线;
若叉积小于0,则ab顺时针旋转到ac;
知道了以上知识点,回到凸包函数中:
vector<Point> convex_hull(vector<Point> &p){
int n=p.size(),k=0;
vector<Point> h(2*n);
sort(p.begin(),p.end(),cmp);
for(int i=0;i<n;i++){
while(k>=2 && cross(h[k-2],h[k-1],p[i])<=0) k--;
h[k++]=p[i];
}
for(int i=n-2,t=k;i>=0;i--){
while(k>t && cross(h[k-2],h[k-1],p[i])<=0) k--;
h[k++]=p[i];
}
h.resize(k-1);
return h;
}
该函数参数为点集,即需要从这些点中找到凸包点,首先将这些点进行排序(sort函数),排序规则如下,即从左到右,从上往下。
bool cmp(Point a,Point b){
if(a.x!=b.x) return a.x<b.x;
return a.y<b.y;
}
然后依次遍历这些点集,根据叉积的性质得到凸包点。部分流程如下图所示。
点1为起始点,依次遍历,上图右侧是两种不同情况下的交叉积,可以看到右上的图表示向量12和向量13的交叉积,然而在图像中y(height)方向于直角坐标系方向不一致,经过坐标变换后可得到变换后的示意图,此时应用右手定则是符合的,所以在图像中交叉积大于零的时候,表示从第一条直线到第二条直线是顺时针旋转的。
convex_hull函数有两个for循环,通过遍历分别得到上下两部分的凸包点集合。
有了凸包点集之后,可以通过凸包点集计算该凸包的最小外接矩形。最小外接矩形的计算函数为minBoundRect。该函数执行以下操作:
1、先计算方位角(方位角是用来进行旋转的)
2、将方位角对 π / 2 \pi/2 π/2进行取余并去除重复角度
3、将边缘坐标写成矩阵的形式(便于做矩阵乘法)
4、遍历旋转角度,并计算相应旋转矩阵(用来和边缘坐标矩阵相乘),得到旋转后的边缘坐标矩阵
5、计算旋转后的边缘坐标矩阵的最大最小height、width值,此矩形即为当前角度下的外接矩形
6、将上一步计算得到的外接矩形进行反旋转(即乘以相应旋转矩阵的转置矩阵)
7、反旋转得到的矩形就是一个原连通区的外接矩形,根据所使用的方法可以选择取面积最小的矩形或是周长最小的矩形,遍历结束就可以得到最小外接矩形的四个点及相应面积、周长、纵横比等参数
以上计算过程详见代码,其中用到了矩阵乘法matrixMultiply以及矩阵转置transpose,另外需要注意利用取余函数fmod时候的正负值问题。