凸包计算及连通区最小外接矩形计算

文章介绍了一种计算二维空间中点集凸包及其最小外接矩形的算法。首先,通过排序和叉积判断构建凸包,接着计算旋转角度并去除重复,将点集转换为矩阵形式。然后,遍历旋转角度,计算最小外接矩形的面积、周长和纵横比。最终,找到面积或周长最小的矩形并返回其顶点坐标和相关参数。
摘要由CSDN通过智能技术生成

以下是一个简单的算法,用来计算凸包,并根据凸包的坐标来计算最小外接矩形

#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
#define _USE_MATH_DEFINES
#include <math.h>

using namespace std;

struct Point{
    double x,y;
};

double cross(Point a,Point b,Point c){
    double x1=b.x-a.x,x2=c.x-a.x;
    double y1=b.y-a.y,y2=c.y-a.y;
    return x1*y2-x2*y1;
}

bool cmp(Point a,Point b){
    if(a.x!=b.x) return a.x<b.x;
    return a.y<b.y;
}

vector<Point> convex_hull(vector<Point> &p){
    int n=p.size(),k=0;
    vector<Point> h(2*n);
    sort(p.begin(),p.end(),cmp);

    for(int i=0;i<n;i++){
        while(k>=2 && cross(h[k-2],h[k-1],p[i])<=0) k--;
        h[k++]=p[i];
    }

    for(int i=n-2,t=k;i>=0;i--){
        while(k>t && cross(h[k-2],h[k-1],p[i])<=0) k--;
        h[k++]=p[i];
    }

    h.resize(k-1);
    return h;
}

double min_bounding_rectangle(vector<Point> &p){
    vector<Point> h=convex_hull(p);
    int n=h.size();
    double ans=1e20;
    for(int i=0;i<n;i++){
        int j=(i+1)%n,k=(j+1)%n;
        while(cross(h[i],h[j],h[k])<cross(h[i],h[j],h[(k+1)%n])){
            k=(k+1)%n;
        }
        double dx=h[i].x-h[j].x,dy=h[i].y-h[j].y;
        double area=fabs(cross(h[i],h[j],h[k]))/sqrt(dx*dx+dy*dy);
        ans=min(ans,area);
    }
    return ans;
}


struct rect //四个点的矩形
{
    point first, second, third, fouth;
    double area, perimeter, aspect;
};
//4计算最小外接矩形,利用凸包的边进行旋转,返回的rect中包含最小外接矩形的:4个顶点、面积、周长、纵横比
static rect minBoundRect(const std::vector<point> &convexHullCoor, int methodID=0)
{//用来计算给定坐标点集合的最小外接矩形,返回最小外接矩形四个顶点坐标以及面积、周长
 //需要返回的外接矩形信息
    rect minBoundRect;
    //当凸包点数小于3时,直接返回0
    if(convexHullCoor.size()<3)
    {
        point zero;
        zero.width=0, zero.height=0;
        minBoundRect.first=zero;
        minBoundRect.second=zero;
        minBoundRect.third=zero;
        minBoundRect.fouth=zero;
        minBoundRect.area=0;
        minBoundRect.perimeter=0;  //严格来说两点的周长不为零
        minBoundRect.aspect=0;  //纵横比
        return minBoundRect;
        }
    //计算方位角
    double *pAngle = new double[convexHullCoor.size()];
    for(int i=0; i<convexHullCoor.size()-1; i++)
    {
        pAngle[i] = std::atan2(convexHullCoor[i+1].height-convexHullCoor[i].height,convexHullCoor[i+1].width-convexHullCoor[i].width);
    }
    //最后一个方位角,利用第一个计算
    pAngle[convexHullCoor.size()-1] = std::atan2(convexHullCoor[0].height-convexHullCoor[convexHullCoor.size()-1].height,convexHullCoor[0].width-convexHullCoor[convexHullCoor.size()-1].width);

    //对pi/2取余,旋转角度
    double *pEdgeAngle = new double[convexHullCoor.size()];
    for(int i=0; i<convexHullCoor.size(); i++)
    {
        pEdgeAngle[i] = fmod(pAngle[i],M_PI/2);
        double tmp = fmod(pAngle[i],M_PI/2);
        tmp<0? pEdgeAngle[i] = M_PI/2+tmp:pEdgeAngle[i] =tmp;
    }
    //对pEdgeAngle排序,升序
    std::sort(pEdgeAngle,pEdgeAngle+convexHullCoor.size());
    //去除重复出现的元素,得到去重之后的数量uniqueNum,即只需要旋转以下角度就可以
    int uniqueNum = std::unique(pEdgeAngle,pEdgeAngle+convexHullCoor.size())-pEdgeAngle; //去重函数返回地址为:去重后最后一个不重复元素地址
    //得到坐标矩阵
    std::vector<std::vector<double>> xy(convexHullCoor.size(),std::vector<double>(2,0));
    for(int i=0; i<convexHullCoor.size(); i++)
    {
        xy[i][0] = convexHullCoor[i].width;
        xy[i][1] = convexHullCoor[i].height;
    }
    double maxValue = DBL_MAX;
    double area = DBL_MAX;
    double perimeter = DBL_MAX;
    double aspect=0;
    std::vector<std::vector<double>> rect(4,std::vector<double>(2,0));
    //将数据旋转相应角度
    std::vector<std::vector<double>> rot(2,std::vector<double>(2,0)); //2×2矩阵,double类型,初始化为0
    for(int i=0; i<uniqueNum; i++)
    {
        //计算rot的值,数据旋转-edgeAngle
        rot[0][0] =  cos(-pEdgeAngle[i]);
        rot[0][1] =  sin(-pEdgeAngle[i]);
        rot[1][0] =  -sin(-pEdgeAngle[i]);
        rot[1][1] =  cos(-pEdgeAngle[i]);
        std::vector<std::vector<double>> xyr = matrixMultiply(xy,rot,convexHullCoor.size(),2,2);
        //计算最值,即当前旋转下外接矩形的顶点坐标
        double minX = DBL_MAX, minY = DBL_MAX;
        double maxX = -DBL_MAX, maxY = -DBL_MAX;  //不能用DBL_MIN,  DBL_MIN表示最小的正数,坐标可能为负
        for(int i=0; i<convexHullCoor.size(); i++)
        {
            if(xyr[i][0]<minX) minX = xyr[i][0];
            if(xyr[i][0]>maxX) maxX = xyr[i][0];
            if(xyr[i][1]<minY) minY = xyr[i][1];
            if(xyr[i][1]>maxY) maxY = xyr[i][1];
        }
        //计算矩形的面积、周长以及纵横比
        double area_t = (maxX-minX)*(maxY-minY);
        double perimeter_t = 2*((maxX-minX)+(maxY-minY));
        double aspect_t;
        (maxX-minX)>(maxY-minY)? aspect_t=(maxX-minX)/(maxY-minY):aspect_t=(maxY-minY)/(maxX-minX);
        //默认取最小面积,即methodID=0,也可以取最小周长
        double currentValue=0;
        if(methodID==0) currentValue = area_t;
        else if(methodID==1) currentValue = perimeter_t;
        if(currentValue<maxValue)
        {
            maxValue = currentValue;
            area = area_t;
            perimeter = perimeter_t;
            aspect = aspect_t;
            rect[0][0]=minX, rect[0][1]=minY, rect[1][0]=maxX, rect[1][1]=minY;
            rect[2][0]=maxX, rect[2][1]=maxY, rect[3][0]=minX, rect[3][1]=maxY;
            //先将rot转置
            rot = transpose(rot);
            rect = matrixMultiply(rect,rot,4,2,2);//反变换,得到未旋转的坐标
        }
    }

    minBoundRect.area = area;
    minBoundRect.perimeter = perimeter;
    minBoundRect.first.width = rect[0][0], minBoundRect.first.height=rect[0][1];
    minBoundRect.second.width = rect[1][0], minBoundRect.second.height=rect[1][1];
    minBoundRect.third.width = rect[2][0], minBoundRect.third.height=rect[2][1];
    minBoundRect.fouth.width = rect[3][0], minBoundRect.fouth.height=rect[3][1];
    minBoundRect.aspect = aspect;
    delete [] pAngle;
    delete [] pEdgeAngle;
    return minBoundRect;
}

//矩阵乘法, double类型数组
std::vector<std::vector<double>> matrixMultiply(std::vector<std::vector<double>>& a, std::vector<std::vector<double>>& b, int m1, int n1, int n2)
{//m1、n1为矩阵a的行数和列数,n2为矩阵b的列数
    std::vector<std::vector<double>> result(m1, std::vector<double>(n2, 0));  // 存储结果的矩阵,初始化为0
    for (int i = 0; i < m1; i++) {
        for (int j = 0; j < n2; j++) {
            for (int k = 0; k < n1; k++) {
                result[i][j] += a[i][k] * b[k][j];  // 矩阵乘法公式
            }
        }
    }

    return result;
}

//矩阵转置, double类型数组
std::vector<std::vector<double>> transpose(std::vector<std::vector<double>>& matrix)
{
    int m = matrix.size(); // 原矩阵行数
    int n = matrix[0].size(); // 原矩阵列数
    std::vector<std::vector<double>> res(n, std::vector<double>(m)); // 初始化转置矩阵
    // 将原矩阵中的每个元素放入对应位置的转置矩阵中
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            res[j][i] = matrix[i][j];
        }
    }
    return res;
}

int main(){
    int n;
    cin>>n;
    vector<Point> p(n);
    for(int i=0;i<n;i++){
        cin>>p[i].x>>p[i].y;
    }
    double ans=minBoundRect(p);
    cout<<ans<<endl;
    return 0;
}

以上代码中,struct Point定义了一个二维坐标系中的点,cross()函数用来计算两个向量的叉积,cmp()函数用来排序,convex_hull()函数用来计算凸包,min_bounding_rectangle()函数用来计算凸包的最小外接矩形,最后在main()函数中输入点的坐标,输出计算结果。

对算法本身进行分析,如对下图所示的边缘区域进行凸包求取的计算。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-SrKt49F3-1679327903495)(C:\Users\Censh77\AppData\Roaming\Typora\typora-user-images\image-20230315141246136.png)]

在此之前先了解交叉积的相关知识:

交叉积可以被定义为:

模长:(在这里θ表示两向量之间的夹角(共起点的前提下)(0°≤θ≤180°),它位于这两个矢量所定义的平面上。)

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KBvkg6Tb-1679327904311)(null)]

c的长度在数值上等于以a,**b,**夹角为θ组成的平行四边形的面积。

方向:a向量与b向量的向量积的方向与这两个向量所在平面垂直,且遵守右手定则。(一个简单的确定满足“右手定则”的结果向量的方向的方法是这样的:若坐标系是满足右手定则的,当右手的四指从a以不超过180度的转角转向b时,竖起的大拇指指向是c的方向。)

已知点 a ( x 1 , y 1 ) a(x_1,y_1) a(x1,y1), b ( x 2 , y 2 ) b(x_2,y_2) b(x2,y2),则叉积的二维坐标表示为:
a × b = x 1 y 2 − x 2 y 1 a×b=x_1y_2-x_2y_1 a×b=x1y2x2y1
上述代码中用到了cross函数来求交叉积(向量积、外积),正是用到了上述公式。

double cross(Point a,Point b,Point c){
    double x1=b.x-a.x,x2=c.x-a.x;
    double y1=b.y-a.y,y2=c.y-a.y;
    return x1*y2-x2*y1;
}

cross函数参数中有三个点a、b、c,组成的向量ab和ac如下图所示:

在这里插入图片描述

对于叉积ab×ac

若叉积大于0,则ab逆时针旋转到ac;

若叉积等于0,则a、b、c三点共线;

若叉积小于0,则ab顺时针旋转到ac;

知道了以上知识点,回到凸包函数中:

vector<Point> convex_hull(vector<Point> &p){
    int n=p.size(),k=0;
    vector<Point> h(2*n);
    sort(p.begin(),p.end(),cmp);

    for(int i=0;i<n;i++){
        while(k>=2 && cross(h[k-2],h[k-1],p[i])<=0) k--;
        h[k++]=p[i];
    }

    for(int i=n-2,t=k;i>=0;i--){
        while(k>t && cross(h[k-2],h[k-1],p[i])<=0) k--;
        h[k++]=p[i];
    }

    h.resize(k-1);
    return h;
}

该函数参数为点集,即需要从这些点中找到凸包点,首先将这些点进行排序(sort函数),排序规则如下,即从左到右,从上往下。

bool cmp(Point a,Point b){
    if(a.x!=b.x) return a.x<b.x;
    return a.y<b.y;
}

然后依次遍历这些点集,根据叉积的性质得到凸包点。部分流程如下图所示。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-K6lGf40Q-1679327903497)(C:\Users\Censh77\AppData\Roaming\Typora\typora-user-images\image-20230315141746986.png)]

​ 点1为起始点,依次遍历,上图右侧是两种不同情况下的交叉积,可以看到右上的图表示向量12和向量13的交叉积,然而在图像中y(height)方向于直角坐标系方向不一致,经过坐标变换后可得到变换后的示意图,此时应用右手定则是符合的,所以在图像中交叉积大于零的时候,表示从第一条直线到第二条直线是顺时针旋转的。

​ convex_hull函数有两个for循环,通过遍历分别得到上下两部分的凸包点集合。

​ 有了凸包点集之后,可以通过凸包点集计算该凸包的最小外接矩形。最小外接矩形的计算函数为minBoundRect。该函数执行以下操作:

1、先计算方位角(方位角是用来进行旋转的)

2、将方位角对 π / 2 \pi/2 π/2进行取余并去除重复角度

3、将边缘坐标写成矩阵的形式(便于做矩阵乘法)

4、遍历旋转角度,并计算相应旋转矩阵(用来和边缘坐标矩阵相乘),得到旋转后的边缘坐标矩阵

5、计算旋转后的边缘坐标矩阵的最大最小height、width值,此矩形即为当前角度下的外接矩形

6、将上一步计算得到的外接矩形进行反旋转(即乘以相应旋转矩阵的转置矩阵)

7、反旋转得到的矩形就是一个原连通区的外接矩形,根据所使用的方法可以选择取面积最小的矩形或是周长最小的矩形,遍历结束就可以得到最小外接矩形的四个点及相应面积、周长、纵横比等参数

​ 以上计算过程详见代码,其中用到了矩阵乘法matrixMultiply以及矩阵转置transpose,另外需要注意利用取余函数fmod时候的正负值问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值