torchtext使用-- 单标签多分类任务TREC

本篇文章参考:
Multi-class Sentiment Analysis

部分细节可能会略作改动,代码注释尽数基于自己的理解。文章目的仅作个人领悟记录,并不完全是tutorial的翻译,可能并不适用所有初学者,但也可从中互相借鉴吸收参考。


接上篇:torchtext使用–convolution IMDB
这是第五篇

这次我们将尝试多分类任务TREC而不是IMDB
import torch
import torchtext
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchtext import data
from torchtext import datasets

import numpy as np
import random
import math

use_cuda=torch.cuda.is_available()
device=torch.device("cuda" if use_cuda else "cpu")

SEED=1234
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
if use_cuda:
    torch.cuda.manual_seed(SEED)

torch.backends.cudnn.deterministic = True

torchtext使用的四步

由于这次是多label,因此对于LabelField,不用将其设置为float,因为下游算loss的函数不再是二元交叉熵而是crossentropy似然估计,label要求是LongTensor

1.构建Field

TEXT=data.Field(tokenize="spacy",tokenizer_language="en_core_web_sm",batch_first=True)
LABEL=data.LabelField()

2.构建datasets

由于TREC数据集可以选定参数fine_grained,让数据集是6分类还是50分类的,这里选择5分类。

train_data, test_data=datasets.TREC.splits(TEXT,LABEL,fine_grained=False)
train_data, valid_data=train_data.split(split_ratio=0.8)

查看一下:

vars(train_data[1])
{'text': ['Who',
  'replaced',
  'Bert',
  'Parks',
  'as',
  'the',
  'host',
  'of',
  'The',
  'Miss',
  'America',
  'Pageant',
  '?'],
 'label': 'HUM'}

3.构建vocab

MAX_VOCAB_SIZE = 25_000

TEXT.build_vocab(train_data,max_size=MAX_VOCAB_SIZE,
                 vectors="glove.6B.100d",unk_init=torch.Tensor.normal_)
LABEL.build_vocab(train_data)

看一下标签:

LABEL.vocab.stoi
defaultdict(None,
            {'HUM': 0, 'ENTY': 1, 'DESC': 2, 'NUM': 3, 'LOC': 4, 'ABBR': 5})

看一下数据集:

TEXT.vocab.itos[:10]
['<unk>', '<pad>', '?', 'the', 'What', 'is', 'of', 'in', 'a', '`']

4.创建iterator

BATCH_SIZE = 64

train_iterator, valid_iterator, test_iterator =data.BucketIterator.splits((train_data,valid_data,test_data),
                            batch_size=BATCH_SIZE,device=device)

创建模型

这里依旧使用之前用过的conv层,由于上篇使用的是二维,这里示范一维卷积。
其实一维卷积、二维卷积区别就在kernel_size的维度.在运用卷积的时候,你完全不用担心卷积窗口到底怎么卷,你只需要关心窗口大小和卷积步长,这决定了卷积结果的大小(seq - kernel_size + 1).模型前向传播的时候会自动滑动窗口。
所以很多情况下,卷积的维度可以转换,只要将输入的维度转换得符合你的要求。
这里,将输入的embedding作为channel的维度,这样可以不用unsqueeze出一个channel维度。

另外,注意卷积之后不要忘了经过一层relu激活;喂给全连接层之前记得dropout失活。

from typing import Tuple

class CNN(nn.Module):
    def __init__(self, vocab_size, embedding_dim, n_filters, filter_sizes:Tuple, output_dim,
                 dropout, pad_idx):
        super(CNN, self).__init__()

        self.embed=nn.Embedding(vocab_size,embedding_dim,pad_idx)

        self.convs=nn.ModuleList([nn.Conv1d(in_channels=embedding_dim,out_channels=n_filters
                                            ,kernel_size=fs) for fs in filter_sizes])

        self.fc=nn.Linear(len(filter_sizes)*n_filters,output_dim)
        
        self.dropout=nn.Dropout(dropout)
    
    def forward(self,text):
        #text:(batch,seq)
        embeded=self.embed(text)
        #embeded:(batch,seq,embedding)
        
        embeded=embeded.permute(0,2,1)
        # embeded:(batch,embedding,seq)
        
        conveds=[torch.relu(conv(embeded)) for conv in self.convs]
        #conved:(batch,n_filters,seq-kernel_size+1)
        
        pooled=[F.max_pool1d(conved,conved.shape[-1]).squeeze(-1) for conved in conveds]
        #pooled:(batch,n_filters)
        
        cat=self.dropout(torch.cat(pooled,dim=1))
        #cat:(batch,n_filters*len(filter_size))
        
        return self.fc(cat)
        #(batch,output_dim)

实例化模型

INPUT_DIM = len(TEXT.vocab)
EMBEDDING_DIM = 100
N_FILTERS = 100
FILTER_SIZES = [2,3,4]
OUTPUT_DIM = len(LABEL.vocab)
DROPOUT = 0.5
PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token]

model = CNN(INPUT_DIM, EMBEDDING_DIM, N_FILTERS, FILTER_SIZES, OUTPUT_DIM, DROPOUT, PAD_IDX)
数一下参数
def count_parameters(model):
    return sum(p.numel() for p in model.parameters() if p.requires_grad)

print(f'The model has {count_parameters(model):,} trainable parameters')
The model has 903,606 trainable parameters
可以用下面的代码先将模型初始化
def init_parameters(model:nn.Module):
    for name,p in model.named_parameters():
        if 'weight' in name : #如果是权重,那就初始化为期望为0,标准差为0.01
            nn.init.normal_(p.data,mean=0,std=0.01)
        else:                 #如果是偏置常数,就设置为0
            nn.init.constant_(p.data,0)

model.apply(init_parameters)

CNN(
  (embed): Embedding(8115, 100, padding_idx=1)
  (convs): ModuleList(
    (0): Conv1d(100, 100, kernel_size=(2,), stride=(1,))
    (1): Conv1d(100, 100, kernel_size=(3,), stride=(1,))
    (2): Conv1d(100, 100, kernel_size=(4,), stride=(1,))
  )
  (fc): Linear(in_features=300, out_features=6, bias=True)
  (dropout): Dropout(p=0.5, inplace=False)
)

设置embed初值

UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token]

pretrained_embeddings = TEXT.vocab.vectors
model.embed.weight.data.copy_(pretrained_embeddings)
model.embed.weight.data[PAD_IDX]=torch.zeros(EMBEDDING_DIM)
model.embed.weight.data[UNK_IDX]=torch.zeros(EMBEDDING_DIM)

定义loss,optimizer,把训练的参数搬到GPU

这里loss_function用的是Crossentropy ,利用的是似然估计误差

criterion=nn.CrossEntropyLoss()
model=model.to(device)
criterion=criterion.to(device)
optimizer=optim.Adam(model.parameters())

定义acc计算

tensor.argmax(dim : int , keepdim : bool) 用于返回tensor中值最大的那个元素的下标。如果不指定dim,那么将是整个tensor的;keepdim用于指定返回的tensor是否保留,argmax之后余下的那个1的维度
tensor.eq(tensor) 用于比较两个形状像等的tensor各个位置是否相等,返回一个布尔tensor
from torch import Tensor
def categorical_accuracy(preds:Tensor, y:Tensor):
    max_preds=preds.argmax(dim=1)
    correct=max_preds.eq(y)

    return  correct.sum()/torch.FloatTensor([y.shape[0]])

定义训练

def train(model:nn.Module,iterator:data.BucketIterator,
          optimizer:optim.Adam, criterion:nn.CrossEntropyLoss):
    epoch_loss=0.
    epoch_acc=0.

    model.train()

    for batch in iterator:
        preds=model(batch.text)
        loss=criterion(preds,batch.label)
        acc=categorical_accuracy(preds,batch.label)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        epoch_loss+=loss.item()
        epoch_acc+=acc.item()

    return epoch_loss / len(iterator), epoch_acc / len(iterator)
def evaluate(model:nn.Module,iterator:data.BucketIterator,
          criterion:nn.CrossEntropyLoss):
    epoch_loss=0.
    epoch_acc=0.

    model.eval()

    with torch.no_grad():
        for batch in iterator:
            preds=model(batch.text)
            loss=criterion(preds,batch.label)
            acc=categorical_accuracy(preds,batch.label)

            epoch_loss+=loss.item()
            epoch_acc+=acc.item()

    return epoch_loss / len(iterator), epoch_acc / len(iterator)

开始训练

import time

def epoch_time(start_time, end_time):
    elapsed_time = end_time - start_time
    elapsed_mins = int(elapsed_time / 60)
    elapsed_secs = int(elapsed_time - (elapsed_mins * 60))
    return elapsed_mins, elapsed_secs
N_EPOCHS = 5

best_valid_loss = float('inf')

for epoch in range(N_EPOCHS):

    start_time = time.time()
    
    train_loss, train_acc = train(model, train_iterator, optimizer, criterion)
    valid_loss, valid_acc = evaluate(model, valid_iterator, criterion)
    
    end_time = time.time()

    epoch_mins, epoch_secs = epoch_time(start_time, end_time)
    
    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        torch.save(model.state_dict(), 'tut5-model.pt')
    
    print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')
    print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')
    print(f'\t Val. Loss: {valid_loss:.3f} |  Val. Acc: {valid_acc*100:.2f}%')
Epoch: 01 | Epoch Time: 0m 2s
	Train Loss: 1.266 | Train Acc: 50.20%
	 Val. Loss: 0.890 |  Val. Acc: 65.89%
Epoch: 02 | Epoch Time: 0m 0s
	Train Loss: 0.780 | Train Acc: 72.16%
	 Val. Loss: 0.622 |  Val. Acc: 78.21%
Epoch: 03 | Epoch Time: 0m 0s
	Train Loss: 0.545 | Train Acc: 81.20%
	 Val. Loss: 0.511 |  Val. Acc: 81.68%
Epoch: 04 | Epoch Time: 0m 0s
	Train Loss: 0.403 | Train Acc: 86.81%
	 Val. Loss: 0.452 |  Val. Acc: 83.77%
Epoch: 05 | Epoch Time: 0m 0s
	Train Loss: 0.295 | Train Acc: 90.39%
	 Val. Loss: 0.418 |  Val. Acc: 84.64%

评估一下

model.load_state_dict(torch.load('tut5-model.pt'))

test_loss, test_acc = evaluate(model, test_iterator, criterion)

print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')
Test Loss: 0.325 | Test Acc: 88.40%

下一篇:torchtext使用–Transformer的IMDB情感分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值