傅里叶级数和傅里叶变换


最近在做音频处理相关的内容,所以打算对傅里叶的相关内容做一个小结。大学本科时学过复变函数,不过现在已经忘的差不多了,然后毕业后也经常会用到这个东西,无论是一维的信号还是二维的图像,所以就打算对此做一个理论推导。另外,在下文推导中全部假设所有函数都满足可进行傅里叶变换的条件假设,对于其他一些特殊函数,不在本文讨论范围之内。

基本定理

三角函数的正交性

对于三角函数组合 1 , s i n x , c o s x , s i n 2 x , c o s 2 x , . . . , s i n n x , c o s n x , . . . 1, sinx , cosx, sin2x, cos2x,...,sinnx,cosnx,... 1,sinx,cosx,sin2x,cos2x,...,sinnx,cosnx,...中任意两个函数的乘积在 [ − π , π ] [-\pi,\pi] [π,π]上的积分都为0,即 ∫ − π π s i n ( x ) d x = 0 \int\limits_{-\pi}^{\pi} {sin(x)}dx=0 ππsin(x)dx=0 ∫ − π π c o s ( x ) d x = 0 \int\limits_{-\pi}^{\pi} {cos(x)}dx=0 ππcos(x)dx=0 ∫ − π π s i n ( m x ) c o s ( n x ) d x = 0 \int\limits_{-\pi}^{\pi} {sin(mx)cos(nx)}dx=0 ππsin(mx)cos(nx)dx=0 ∫ − π π s i n ( m x ) s i n ( n x ) d x = 0 \int\limits_{-\pi}^{\pi} {sin(mx)sin(nx)}dx=0 ππsin(mx)sin(nx)dx=0 ∫ − π π c o s ( m x ) c o s ( n x ) d x = 0 \int\limits_{-\pi}^{\pi} {cos(mx)cos(nx)}dx=0 ππcos(mx)cos(nx)dx=0

欧拉公式

e i x = c o s ( x ) + i s i n ( x ) e^{ix}=cos(x) +isin(x) eix=cos(x)+isin(x)

傅里叶级数

三角形式

对于一个周期为 T T T 的函数,可以用一系列三角函数的叠加组成,令 ω = 2 π T \omega={2\pi \over T} ω=T2π,则
f ( t ) = b 0 2 + ∑ n = 1 + ∞ [ a n s i n ( n ω t ) + b n c o s ( n ω t ) ] f(t) = {b_0 \over 2} + \sum \limits_{n=1}^{+\infty}{[a_n sin(n\omega t)+b_ncos(n\omega t)]} f(t)=2b0+n=1+[ansin(nωt)+bncos(nωt)]
对上式在某个周期上进行积分可得 ∫ t 0 t 0 + T f ( t ) d t = ∫ t 0 t 0 + T b 0 2 d t + ∫ t 0 t 0 + T ∑ n = 1 + ∞ [ a n sin ⁡ ( n ω t ) + b n cos ⁡ ( n ω t ) ] d t \int\limits_{{t_0}}^{{t_0} + T} {f(t)dt = } \int\limits_{{t_0}}^{{t_0} + T} { {b_0 \over 2}} dt + \int\limits_{{t_0}}^{{t_0} + T} \sum \limits_{n=1}^{+\infty} {[{a_n}\sin (n\omega t) + {b_n}\cos (n\omega t)]} dt t0t0+Tf(t)dt=t0t0+T2b0dt+t0t0+Tn=1+[ansin(nωt)+bncos(nωt)]dt = b 0 2 T + 2 π T ∫ x 0 x 0 + 2 π ∑ n = 1 + ∞ [ a n sin ⁡ ( n x ) + b n cos ⁡ ( n x ) ] d x = b 0 T = {b_0 \over 2}T + {{2\pi } \over T}\int\limits_{{x_0}}^{{x_0} + 2\pi } \sum \limits_{n=1}^{+\infty} {[{a_n}\sin (nx) + {b_n}\cos (nx)]} dx=b_0T =2b0T+T2πx0x0+2πn=1+[ansin(nx)+bncos(nx)]dx=b0T得到, b 0 = 2 T ∫ t 0 t 0 + T f ( t ) d t b_0={2 \over T} \int\limits_{{t_0}}^{{t_0} + T} {f(t)dt} b0=T2t0t0+Tf(t)dt

对上式两边同时乘以 s i n ( m ω t ) sin(m\omega t) sin(mωt),再在某个周期上进行积分可得 ∫ t 0 t 0 + T f ( t ) sin ⁡ ( m ω t ) d t = a 0 ∫ t 0 t 0 + T sin ⁡ ( m ω t ) d t + ∫ t 0 t 0 + T ∑ n = 1 + ∞ [ a n sin ⁡ ( n ω t ) sin ⁡ ( m ω t ) + b n cos ⁡ ( n ω t ) sin ⁡ ( m ω t ) ] d t \int\limits_{{t_0}}^{{t_0} + T} {f(t)\sin (m\omega t)dt = } {a_0}\int\limits_{{t_0}}^{{t_0} + T} {\sin (m\omega t)} dt + \int\limits_{{t_0}}^{{t_0} + T} {\sum\limits_{n = 1}^{+\infty} {[{a_n}\sin (n\omega t)\sin (m\omega t ) + {b_n}\cos (n\omega t)\sin (m\omega t )]} } dt t0t0+Tf(t)sin(mωt)dt=a0t0t0+Tsin(mωt)dt+t0t0+Tn=1+[ansin(nωt)sin(mωt)+bncos(nωt)sin(mωt)]dt = a m ∫ t 0 t 0 + T sin ⁡ 2 ( m ω t ) d t = a m 2 ∫ t 0 t 0 + T [ 1 − cos ⁡ ( 2 m ω t ) ] d t = a m 2 T = {a_m}\int\limits_{{t_0}}^{{t_0} + T} {{{\sin }^2}(m\omega t)} dt = {{{a_m}} \over 2}\int\limits_{{t_0}}^{{t_0} + T} {[1-\cos (2m\omega t)} ]dt = {{{a_m}} \over 2}T =amt0t0+Tsin2(mωt)dt=2amt0t0+T[1cos(2mωt)]dt=2amT
得到 a m = 2 T ∫ t 0 t 0 + T f ( t ) sin ⁡ ( m ω t ) d t a_m ={2 \over T} \int\limits_{{t_0}}^{{t_0} + T} {f(t)\sin (m\omega t)dt} am=T2t0t0+Tf(t)sin(mωt)dt

对上式两边同时乘以 c o s ( m ω t ) cos(m\omega t) cos(mωt),再在某个周期上进行积分可得 ∫ t 0 t 0 + T f ( t ) cos ⁡ ( m ω t ) d t = a 0 ∫ t 0 t 0 + T cos ⁡ ( m ω t ) d t + ∫ t 0 t 0 + T ∑ n = 1 + ∞ [ a n sin ⁡ ( n ω t ) cos ⁡ ( m ω t ) + b n cos ⁡ ( n ω t ) cos ⁡ ( m ω t ) ] d t \int\limits_{{t_0}}^{{t_0} + T} {f(t)\cos (m\omega t)dt = } {a_0}\int\limits_{{t_0}}^{{t_0} + T} {\cos (m\omega t)} dt + \int\limits_{{t_0}}^{{t_0} + T} {\sum\limits_{n = 1}^{+\infty} {[{a_n}\sin (n\omega t)\cos (m\omega t ) + {b_n}\cos (n\omega t)\cos (m\omega t )]} } dt t0t0+Tf(t)cos(mωt)dt=a0t0t0+Tcos(mωt)dt+t0t0+Tn=1+[ansin(nωt)cos(mωt)+bncos(nωt)cos(mωt)]dt = b m ∫ t 0 t 0 + T cos ⁡ 2 ( m ω t ) d t = b m 2 ∫ t 0 t 0 + T [ cos ⁡ ( 2 m ω t ) + 1 ] d t = b m 2 T = {b_m}\int\limits_{{t_0}}^{{t_0} + T} {{{\cos }^2}(m\omega t)} dt = {{{b_m}} \over 2}\int\limits_{{t_0}}^{{t_0} + T} {[\cos (2m\omega t)} + 1]dt = {{{b_m}} \over 2}T =bmt0t0+Tcos2(mωt)dt=2bmt0t0+T[cos(2mωt)+1]dt=2bmT
得到 b m = 2 T ∫ t 0 t 0 + T f ( t ) cos ⁡ ( m ω t ) d t b_m ={2 \over T} \int\limits_{{t_0}}^{{t_0} + T} {f(t)\cos (m\omega t)dt} bm=T2t0t0+Tf(t)cos(mωt)dt

综上,可以得到傅里叶级数及其系数的形式,如下
f ( t ) = b 0 2 + ∑ n = 1 + ∞ [ a n s i n ( n ω t ) + b n c o s ( n ω t ) ] f(t) = {b_0 \over 2} + \sum \limits_{n=1}^{+\infty}{[a_n sin(n\omega t)+b_ncos(n\omega t)]} f(t)=2b0+n=1+[ansin(nωt)+bncos(nωt)] a n = 2 T ∫ t 0 t 0 + T f ( t ) sin ⁡ ( n ω t ) d t a_n ={2 \over T} \int\limits_{{t_0}}^{{t_0} + T} {f(t)\sin (n\omega t)dt} an=T2t0t0+Tf(t)sin(nωt)dt b n = 2 T ∫ t 0 t 0 + T f ( t ) cos ⁡ ( n ω t ) d t b_n ={2 \over T} \int\limits_{{t_0}}^{{t_0} + T} {f(t)\cos (n\omega t)dt} bn=T2t0t0+Tf(t)cos(nωt)dt

指数形式

根据欧拉公式可以得到
c o s ( x ) = e i x + e − i x 2 cos(x) = {{e^{ix} + e^{-ix}} \over 2} cos(x)=2eix+eix s i n ( x ) = e i x − e − i x 2 i sin(x) = {{e^{ix} - e^{-ix}} \over 2i} sin(x)=2ieixeix 代入傅里叶级数-三角形式中可以得到
f ( t ) = b 0 2 + ∑ n = 1 + ∞ [ a n e i n ω t − e − i n ω t 2 i + b n e i n ω t + e − i n ω t 2 ] f(t) = {b_0 \over 2} + \sum \limits_{n=1}^{+\infty}{[a_n {{e^{in\omega t} - e^{-in\omega t}} \over 2i} +b_n{{e^{in\omega t} + e^{-in\omega t}} \over 2}]} f(t)=2b0+n=1+[an2ieinωteinωt+bn2einωt+einωt] = b 0 2 + ∑ n = 1 + ∞ [ a n e i n ω t − e − i n ω t 2 i + b n e i n ω t + e − i n ω t 2 ] = {b_0 \over 2} + \sum \limits_{n=1}^{+\infty}{[a_n {{e^{in\omega t} - e^{-in\omega t}} \over 2i} +b_n{{e^{in\omega t} + e^{-in\omega t}} \over 2}]} =2b0+n=1+[an2ieinωteinωt+bn2einωt+einωt] = b 0 2 + ∑ n = 1 + ∞ [ b n − i a n 2 e i n ω t + b n + i a n 2 e − i n ω t ] ={b_0 \over 2} + \sum \limits_{n=1}^{+\infty }{[{{b_n-ia_n} \over{2} }e^{in\omega t} + {{b_n+ia_n} \over{2} }e^{-in\omega t}]} =2b0+n=1+[2bnianeinωt+2bn+ianeinωt]
ω n = n ω \omega_n = n\omega ωn=nω
f ( t ) = ∑ n = − ∞ + ∞ c n e i ω n t f(t) = \sum \limits_{n=-\infty}^{+\infty}c_n e^{i\omega_n t} f(t)=n=+cneiωnt n = 0 n=0 n=0 c 0 = b 0 2 = 1 T ∫ t 0 t 0 + T f ( t ) d t c_0={b_0 \over 2}={1 \over T} \int\limits_{{t_0}}^{{t_0} + T} {f(t)dt} c0=2b0=T1t0t0+Tf(t)dt n > 0 n> 0 n>0, c n = b n − i a n 2 = 1 T ∫ t 0 t 0 + T f ( t ) [ c o s ( ω n t ) − i s i n ( ω n t ) ] d t = 1 T ∫ t 0 t 0 + T f ( t ) e − i ω n t d t c_n={{b_n-ia_n} \over{2}}={1\over T} \int\limits_{{t_0}}^{{t_0} + T} f(t)[cos(\omega_n t) -i sin(\omega_n t)]dt= {1\over T} \int\limits_{{t_0}}^{{t_0} + T}f(t)e^{-i\omega_n t}dt cn=2bnian=T1t0t0+Tf(t)[cos(ωnt)isin(ωnt)]dt=T1t0t0+Tf(t)eiωntdt n < 0 n < 0 n<0, c − n = b − n + i a − n 2 = 1 T ∫ t 0 t 0 + T f ( t ) [ c o s ( ω n t ) − i s i n ( ω n t ) ] d t = 1 T ∫ t 0 t 0 + T f ( t ) e − i ω n t d t c_{-n}={{b_{-n}+ia_{-n}} \over{2}}={1\over T} \int\limits_{{t_0}}^{{t_0} + T} f(t)[cos(\omega_n t) -i sin(\omega_n t)]dt= {1\over T} \int\limits_{{t_0}}^{{t_0} + T}f(t)e^{-i\omega_n t}dt cn=2bn+ian=T1t0t0+Tf(t)[cos(ωnt)isin(ωnt)]dt=T1t0t0+Tf(t)eiωntdt
总上所述,可以得到傅里叶级数的指数形式 f ( t ) = 1 T ∑ n = − ∞ + ∞ ∫ t 0 t 0 + T f ( t ) e − i ω n t d t e i ω n t f(t) ={1\over T} \sum \limits_{n=-\infty}^{+\infty}\int\limits_{{t_0}}^{{t_0} + T}f(t)e^{-i\omega_n t}dt e^{i\omega_n t} f(t)=T1n=+t0t0+Tf(t)eiωntdteiωnt

傅里叶变换

傅里叶积分定理

对于周期函数有上述的傅里叶级数形式,但对于非周期函数,则无法使用傅里叶级数。但非周期函数可以认为是周期趋于无穷大的周期函数,满足傅里叶积分定理。所谓傅里叶积分定理,是指满足一定条件的函数 f ( x ) f(x) f(x) 满足
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω x d ω f(t) = {1 \over 2\pi} \int\limits_{-\infty}^{\infty} F(\omega)e^{i\omega x}d\omega f(t)=2π1F(ω)eiωxdω F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t F(\omega)= \int\limits_{-\infty}^{\infty} f(t)e^{-i\omega t}dt F(ω)=f(t)eiωtdt F ( ω ) 为 f ( t ) 的 傅 里 叶 变 换 函 数 , f ( t ) 为 F ( ω ) F(\omega)为f(t)的傅里叶变换函数,f(t)为F(\omega) F(ω)f(t)f(t)F(ω)的原函数,那么接下来,我们来证明这个傅里叶积分定理。首先,我们回顾一下黎曼积分的具体形式,设 f ( t ) f(t) f(t) [ a , b ] [a,b] [a,b]上的可积函数,则 ∫ a b f ( t ) d t = lim ⁡ N → + ∞ ∑ i = 1 N f ( a + i ( b − a ) N ) b − a N \int\limits_{a}^{b} f(t)dt= \mathop {\lim }\limits_{N \to +\infty } \sum \limits_{i=1}^{N}f(a + {i(b-a)\over N}){b-a\over N} abf(t)dt=N+limi=1Nf(a+Ni(ba))Nba那么,对于非周期函数,可以用周期区域无穷大的周期函数进行近似得到,则 f ( t ) = lim ⁡ T → ∞ 1 T ∑ n = − ∞ + ∞ ∫ t 0 t 0 + T f ( t ) e − i ω n t d t e i ω n t f(t) = \mathop {\lim }\limits_{T \to \infty }{1\over T} \sum \limits_{n=-\infty}^{+\infty}\int\limits_{{t_0}}^{{t_0} + T}f(t)e^{-i\omega_n t}dt e^{i\omega_n t} f(t)=TlimT1n=+t0t0+Tf(t)eiωntdteiωnt = lim ⁡ N → + ∞ 1 T ∑ n = − ∞ + ∞ F ( ω n ) e i ω n t = \mathop {\lim }\limits_{N \to +\infty }{1\over T} \sum \limits_{n=-\infty}^{+\infty} F(\omega_n) e^{i\omega_n t} =N+limT1n=+F(ωn)eiωnt = lim ⁡ N → + ∞ 1 2 π ∑ n = − ∞ + ∞ F ( ω n ) e i ω n t 2 π T = \mathop {\lim }\limits_{N \to +\infty }{1\over 2\pi} \sum \limits_{n=-\infty}^{+\infty} F(\omega_n) e^{i\omega_n t} {{2\pi\over T}} =N+lim2π1n=+F(ωn)eiωntT2π = 1 2 π ∫ − ∞ + ∞ F ( ω ) e i ω t d ω ={1\over 2\pi}\int\limits_{{-\infty}}^{{+\infty} }F(\omega) e^{i\omega t}d\omega =2π1+F(ω)eiωtdω F ( ω ) = ∫ − ∞ ∞ f ( t ) e − i ω t d t F(\omega)= \int\limits_{-\infty}^{\infty} f(t)e^{-i\omega t}dt F(ω)=f(t)eiωtdt以上就是傅里叶级数和傅里叶变换推导的全过程。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值