基于蒙特卡洛和拉丁超立方的大规模电动车充电模型-案例复现(MATLAB-附案例代码)

目录

1. 摘要

2. 基本原理

2.1 蒙特卡罗抽样(Monte Carlo)

2.2.1 主要原理

2.1.2 MC优缺点

2.2  拉丁超立方体抽样(Latin hypercube sampling)

2.2.1 主要原理

3. 大规模电动车充电模型案例分析

3.1 模型构建

3.1.1 电动车日行驶里程概率分布

3.1.2 电动车充电起始时间概率分布

3.2 结果分析

3.2.1 行驶里程采样结果

3.2.2 起始充电时间采样结果

3.2.3 电动车耗电量和充电时间

3.2.4 总充电曲线对比

参考文献

附录

主程序

函数Charge_total

函数Day_Km

函数Time_In


1. 摘要

电动汽车大规模入网充电时会导致系统内负载峰值拔高的问题,和分布式电源一样,都会对电网的安全稳定运行造成冲击,需要在满足系统运行经济效益最优的同时,尽量降低大量电动汽车入网无序充电对系统造成的不良影响。本文通过蒙特卡洛(Monte Carlo,MC)和拉丁超立方(Latin hypercube sampling,LHS)仿真技术,生成大规模电动车无序充电功率曲线,分析大规模电动车接入对电网造成的影响,并对比分析了MC和LHS的模拟结果,分析了二者的区别。

2. 基本原理

2.1 蒙特卡罗抽样(Monte Carlo)

2.2.1 主要原理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值