系统工程导论学习笔记

本文从线性代数的基础出发,探讨矩阵的性质、LU分解、特征值和特征向量等概念,接着深入系统工程,介绍了解释结构模型方法(ISM)、黑箱建模以及预测方法,包括移动平均法、指数平滑法和ARIMA模型。
摘要由CSDN通过智能技术生成

线性代数基础

矩阵的性质

初等矩阵:初等变换矩阵有三种(一行减去另一行的倍数,换行,倍增某一行),由单位矩阵经过一次初等行变换得到的矩阵称为初等矩阵。对线性方程组 A x = b Ax=b Ax=b的消元过程,即为一系列初等矩阵左乘增广矩阵(A|b)。“左乘换行,右乘换列”。
矩阵转置 ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
逆矩阵:A、B方阵都可逆, ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1 d e t A = 1 d e t A − 1 detA=\frac{1}{detA^{-1}} detA=detA11
LU分解:方阵A经一系列初等行变换消去矩阵得到上三角阵U,即EA=U,得到 A = E − 1 U A=E^{-1}U A=E1U,将A分解为下三角阵和上三角阵的乘积。
可逆矩阵A的顺序主子阵 A k A_k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值