线性代数基础
矩阵的性质
初等矩阵:初等变换矩阵有三种(一行减去另一行的倍数,换行,倍增某一行),由单位矩阵经过一次初等行变换得到的矩阵称为初等矩阵。对线性方程组 A x = b Ax=b Ax=b的消元过程,即为一系列初等矩阵左乘增广矩阵(A|b)。“左乘换行,右乘换列”。
矩阵转置: ( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
逆矩阵:A、B方阵都可逆, ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)−1=B−1A−1, d e t A = 1 d e t A − 1 detA=\frac{1}{detA^{-1}} detA=detA−11
LU分解:方阵A经一系列初等行变换消去矩阵得到上三角阵U,即EA=U,得到 A = E − 1 U A=E^{-1}U A=E−1U,将A分解为下三角阵和上三角阵的乘积。
可逆矩阵A的顺序主子阵 A k A_k