【论文笔记】ParamE模型学习

ParamE是一种新的知识图嵌入模型,它将关系嵌入视为神经网络的参数,从而结合了平移性质和非线性拟合能力。论文提出,通过将头部实体嵌入作为输入,关系嵌入作为参数,尾部实体嵌入作为输出,可以提高模型的表达力和平移性。ParamE的实现包括ParamE-MLP、ParamE-CNN和ParamE-Gate,并在实验中表现出通用性。文章还介绍了Gate的概念,将其比喻为控制水流的阀门,用于调节信息的流动。
摘要由CSDN通过智能技术生成

ParamE: Regarding Neural Network Parameters as Relation Embeddings for Knowledge Graph Completion

AAAI 2020

论文地址

Reference Format

GB/T 7714
Che F , Zhang D , Tao J , et al. ParamE: Regarding Neural Network Parameters as Relation Embeddings for Knowledge Graph Completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3):2774-2781.

Problems

神经网络的平移性质和非线性拟合能力在KG嵌入中都是至关重要的。

  1. 以往关于链路预测的平移模型利用了平移特性,但缺乏足够的表达性;
  2. 基于卷积神经网络的模型(ConvE)利用了神经网络巨大的非线性拟合能力,具有较强的预测能力;由于ConvE将神经网络与实体和关系结合在一起,因此忽略了KGs的平移特性。

Methods

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南星_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值