ParamE: Regarding Neural Network Parameters as Relation Embeddings for Knowledge Graph Completion
AAAI 2020
Reference Format
GB/T 7714
Che F , Zhang D , Tao J , et al. ParamE: Regarding Neural Network Parameters as Relation Embeddings for Knowledge Graph Completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3):2774-2781.
Problems
神经网络的平移性质和非线性拟合能力在KG嵌入中都是至关重要的。
- 以往关于链路预测的平移模型利用了平移特性,但缺乏足够的表达性;
- 基于卷积神经网络的模型(ConvE)利用了神经网络巨大的非线性拟合能力,具有较强的预测能力;由于ConvE将神经网络与实体和关系结合在一起,因此忽略了KGs的平移特性。
Methods