【论文笔记】ParamE模型学习

ParamE是一种新的知识图嵌入模型,它将关系嵌入视为神经网络的参数,从而结合了平移性质和非线性拟合能力。论文提出,通过将头部实体嵌入作为输入,关系嵌入作为参数,尾部实体嵌入作为输出,可以提高模型的表达力和平移性。ParamE的实现包括ParamE-MLP、ParamE-CNN和ParamE-Gate,并在实验中表现出通用性。文章还介绍了Gate的概念,将其比喻为控制水流的阀门,用于调节信息的流动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ParamE: Regarding Neural Network Parameters as Relation Embeddings for Knowledge Graph Completion

AAAI 2020

论文地址

Reference Format

GB/T 7714
Che F , Zhang D , Tao J , et al. ParamE: Regarding Neural Network Parameters as Relation Embeddings for Knowledge Graph Completion[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(3):2774-2781.

Problems

神经网络的平移性质和非线性拟合能力在KG嵌入中都是至关重要的。

  1. 以往关于链路预测的平移模型利用了平移特性,但缺乏足够的表达性;
  2. 基于卷积神经网络的模型(ConvE)利用了神经网络巨大的非线性拟合能力,具有较强的预测能力;由于ConvE将神经网络与实体和关系结合在一起,因此忽略了KGs的平移特性。

Methods

### 关于 'aryKeySelective' 参数的使用或错误解决方案 在处理数据库参数时,特别是涉及隐藏参数或特定功能配置的情况下,理解其作用以及可能引发的问题至关重要。以下是关于 `aryKeySelective` 参数的相关分析: #### 1. 隐藏参数的作用与影响 如果 `aryKeySelective` 是一个隐藏参数,则需要注意它可能是为了优化某些内部操作而设计的[^2]。然而,修改隐藏参数通常不建议作为长期解决方案,因为这可能会带来不可预见的副作用。 #### 2. 数据类型转换问题 当遇到类似于 “Conversion of parameter/column from data type VARCHAR1 to ASCII failed” 的错误时,可以尝试通过调整连接属性来解决问题。例如,在 HANA 数据库中,可以通过设置 ODBC 连接属性 `"CHAR_AS_UTF8"` 来规避此类数据类型转换失败的情况[^3]。 #### 3. 正确的 API 使用方式 对于 JSON 或其他结构化数据传输场景,应确保使用正确的 HTTP 方法和请求体格式。具体来说,应该优先使用 `json` 参数而非 `data` 参数,并选择合适的 HTTP 动词(如 POST 或 PUT),以避免因数据序列化不当而导致的错误[^1]。 #### 示例代码:JSON 请求示例 以下是一个 Python 脚本示例,展示如何正确发送带有 JSON 数据的 HTTP 请求: ```python import requests url = "https://example.com/api" payload = {"key": "value", "aryKeySelective": True} headers = {"Content-Type": "application/json"} response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: print("Request successful:", response.json()) else: print("Error occurred:", response.text) ``` #### 解决方案总结 - 如果 `aryKeySelective` 属于隐藏参数,请谨慎评估其用途并测试潜在的影响。 - 对于数据类型转换错误,考虑更新驱动程序版本或者调整客户端配置选项。 - 在构建网络请求时遵循最佳实践,选用适合的数据传递机制。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

南星_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值