CH2_数字图像基础

数字图像基础

一.基础概念

1.视觉感知要素

亮度适应现象:

人的视觉感知系统适应光强度级别范围很宽,从夜阈值到强闪光约有 1 0 10 10^{10} 1010量级,但人的视觉不能同时在整个范围内工作,它是利用改变其整个灵敏度来完成这一变动,这就是亮度适应现象

马赫带现象与同时对比现象

视觉系统对亮度的感知不是简单的强度函数,如马赫带现象与同时对比现象。

马赫带现象:

在这里插入图片描述

同时对比现象:

在这里插入图片描述

人类的感知系统有时会产生视觉错觉

2.图像形成

简单图像形成模型:

我们观察到的图像由信号源与形成图形的场景源对光的反射和吸收造成的。

图像 f ( x , y ) f(x,y) f(x,y)可由两个分量来表征: ( 1 ) (1) (1)入射到观察场景的光源总量,也称之为入射分量 i ( x , y ) i(x,y) i(x,y) ( 2 ) (2) (2)场景中物体反射光的总量,也称为反射分量 r ( x , y ) r(x,y) r(x,y)

f ( x , y ) = i ( x , y ) r ( x , y ) f(x,y)=i(x,y)r(x,y) f(x,y)=i(x,y)r(x,y)

0 < i ( x , y ) < ∞ , 0 < r ( x , y ) < 1 0<i(x,y)<\infty,0<r(x,y)<1 0<i(x,y)<,0<r(x,y)<1

3.图像的取样与量化

为了把图像装换为数字图像,需要在坐标和幅值上都做数字化操作,数字化坐标值称为取样,数字化幅度值称为量化。取样和量化结果是一个实矩阵,我们可以用一个矩阵的形式来表示数字图像。

对于大小为 M × N M\times N M×N,灰度级为 L = 2 k L=2^k L=2k的数字图像,所需的存储空间为$M \times N \times $

一副图像的灰度级为 2 k 2^k 2k时,通常该图像也可称为 K K K比特图像

4.图像的表示

空间分辨率:

取样值决定一副图像空间分辨率的主要参数。空间分辨率是图像中可辨别的最小细节

空间分辨率较小会出现马赛克的现象(明显锯齿)

灰度级分辨率:

灰度级分辨率是指在灰度级别中可分辨的最小变化

通常把大小 M × N M\times N M×N, 灰度级为 L = 2 k L=2^k L=2k的图像的空间分辨率为 M × N M\times N M×N,灰度级分辨率为 L L L

灰度级分辨率太小,会出现明显的轮廓(伪轮廓),对比度增加,会有比较强的明暗变化

灰度级分辨率越大,局部越平滑

5.数字图像的放大与缩小

  • 整数倍的放大与缩小

    • 删除列或复制列的方式用于下采样与上采样
  • 非整数倍的放大与缩小

    • 步骤

      • 1.计算新像素点在原始图像中的位置
      • 2.为这些位置的像素点赋值(与原始图像相应位置的像素值有关)
        • 新像素在原图像的位置仍为整数,直接赋值
        • 为非整数,采用插值法进行赋值
          • 常见插值法
            • 最近邻法(找到最近整数位置)
            • 双线性插值,(上下左右四个像素值的组合)

6.像素间的一些基本关系

1.相邻像素
1.四邻域

对于坐标 ( x , y ) (x,y) (x,y)的一个像素p有四个水平和垂直的相邻像素: ( x + 1 , y ) , ( x − 1 , y ) , ( x , y + 1 ) , ( x , y − 1 ) (x+1,y),(x-1,y),(x,y+1),(x,y-1) (x+1,y),(x1,y),(x,y+1),(x,y1);这个像素集称为像素p的4邻域,记为 N 4 ( p ) N_4(p) N4(p)

2.对角邻域(D邻域)

像素p的四个对角邻像素: ( x + 1 , y + 1 ) , ( x − 1 , y + 1 ) , ( x + 1 , y − 1 ) , ( x − 1 , y − 1 ) (x+1,y+1),(x-1,y+1),(x+1,y-1),(x-1,y-1) (x+1,y+1),(x1,y+1),(x+1,y1),(x1,y1);这个像素集称为像素p的D邻域,记为 N D ( p ) N_D(p) ND(p)

3.八邻域

4邻域和D邻域合成一起称为p的8邻域,记为 N 8 ( p ) N_8(p) N8(p)

像素p的8邻域为像素集: ( x − 1 , y + 1 ) , ( x , y + 1 ) , ( x + 1 , y + 1 ) , ( x − 1 , y ) , ( x + 1 , y ) , ( x − 1 , y − 1 ) , ( x , y − 1 ) , ( x + 1 , y − 1 ) (x-1,y+1),(x,y+1),(x+1,y+1),(x-1,y),(x+1,y),(x-1,y-1),(x,y-1),(x+1,y-1) (x1,y+1),(x,y+1),(x+1,y+1),(x1,y),(x+1,y),(x1,y1),(x,y1),(x+1,y1)

2.邻接性、连通性、区域和边界

V是用于定义邻接性的灰度值集合

V的说明:

  • 灰度值的集合
  • 为了说明连接性定义的,无实际意义,可以自己自定义
1.邻接性(描述两个像素之间的关系)
4邻接:

如果 q q q N 4 ( p ) N_4(p) N4(p)集合中,且具有 V V V中数值的两个像素 p 和 q p和q pq是4邻接的

8邻接:

如果 q q q N 8 ( p ) N_8(p) N8(p)集合中,且具有 V V V中数值的两个像素 p 和 q p和q pq是8邻接的

例题:

下图中,为九个像素点,设 V = { 1 } V=\{1\} V={1},点p与哪些点是4邻接的?与哪些点是8邻接的?

0(a)1(b)
1(d)0(e)
1(f)0(g)1(h)

与点p 4邻接的点:像素点b,d

与像素点p 8邻接的点:像素点b,c,d,f,h

混合邻接(m邻接):

两种情况:

  • q q q N 4 ( q ) N_4(q) N4(q)集合内
  • q q q N D ( p ) N_D(p) ND(p)中且集合 N 4 ( p ) ⋂ N 4 ( q ) N_4(p)\bigcap N_4(q) N4(p)N4(q)中没有集合 V V V中的值

满足以上两条件之一的具有集合 V V V中的像素 p 和 q p和q pq是m邻接的

例题:

下图中,为九个像素点,设 V = { 1 } V=\{1\} V={1},点p与哪些点是m邻接的?

0(a)1(b)
1(d)
1(f)0(g)1(h)

与像素点p m邻接的像素点:b,d,h

为什么要引入m邻接的定义?

两个像素点的路径

从具有坐标 ( x , y ) (x,y) (x,y)的像素点p到具有坐标 ( s , t ) (s,t) (s,t)的像素点q的通路(路径)是特定像素序列,其坐标序列为 ( x 0 , y 0 ) , ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . . . . . , ( x n , y n ) (x_0,y_0),(x_1,y_1),(x_2,y_2),.......,(x_n,y_n) (x0,y0),(x1,y1),(x2,y2),.......,(xn,yn),其中 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)为起点像素p, ( x n , y n ) (x_n,y_n) (xn,yn)为终点像素q,中间的像素点 ( x i − 1 , y i − 1 ) , ( x i , y i ) (x_{i-1},y_{i-1}),(x_i,y_i) (xi1,yi1),(xi,yi)具有邻接性,其中 n n n记作从 p p p q q q的通路长度

下图具有9个像素,设 V = { 1 } V=\{1\} V={1}

0(a)1(b)
0(d)1(e)0(f)
0(g)0(h)

路径采用8邻接,给出从像素p到像素c的通路:

分析可知,从像素e到像素c具有两条路径: e − − > > b − − > > c 或 者 e − − > > c e-->>b-->>c或者e-->>c e>>b>>ce>>c,这样会导致通路具有二义性,引入m邻接以后,二义性会消失,从像素e到像素c的路径变得唯一: e − − > > b − − > c e-->>b-->c e>>b>c

2.连通性

S S S代表图像中像素的一个子集,如果在 S S S中,像素 p p p q q q之间存在一个全部由 S S S中像素组成的通路,则称像素 p p p q q q S S S中是连通的。对于 S S S中的任何像素 p p p,在 S S S中连通到该像素的像素集叫做 S S S的连通分量。如果 S S S仅有一个连通分量,则 S S S为连通集

3.区域与边界

R R R为图像的像素子集,如果 R R R为连通集,则称 R R R为一个区域

3.距离的度量

对于像素 p , q p,q p,q,其坐标为 ( x , y ) , ( s , t ) (x,y),(s,t) (x,y),(s,t),另 D D D是像素之间的距离函数或度量

像素点之间常见的距离函数:

  • 欧氏距离(也称之为 D E D_E DE距离,与 L 2 L_2 L2范式相似)
    • D E ( p , q ) = [ ( x − s ) 2 + ( y − t ) 2 ] 1 2 D_E(p,q)=[(x-s)^2+(y-t)^2]^{\frac{1}{2}} DE(p,q)=[(xs)2+(yt)2]21
  • 曼哈顿距离(也称之为城市街区距离( D 4 D_4 D4),与 L 1 L_1 L1范式相似)
    • D 4 ( p , q ) = ∣ x − s ∣ + ∣ y − t ∣ D_4(p,q)=|x-s|+|y-t| D4(p,q)=xs+yt
  • 棋盘距离(也称之为 D 8 D_8 D8距离,与 ∞ \infty 范式相似)
    • D 8 ( p , q ) = m a x ( ∣ x − s ∣ , ∣ y − t ∣ ) D_8(p,q)=max(|x-s|,|y-t|) D8(p,q)=max(xs,yt)
  • D m D_m Dm距离
    • 定义为像素 p p p q q q的最短 m m m通路的长度
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值