02复杂网络分析中的基本概念

复杂网络分析的基本概念

1.复杂网络的表达方式

1.1 图表达

用节点和边的方式以图形的形式来进行表达

在这里插入图片描述

图的描述:

  • 组成部分:节点,顶点
    • N=6
  • 相互作用:连边,边
    • L=5
  • 系统:网络,图
    • (N,L)
1.2 集合表达
网络G=(V,E),由点集V(G)和边集E(G)组成的一个图,可分为无向,有向和加权网络

上述图表达的网络结构的集合表达为:

V : 点 集 { 1 , 2 , 3 , 4 , 5 , 6 } V:点集 \{1,2,3,4,5,6\} V:{1,2,3,4,5,6}

E : 边 集 { e 1 , e 2 , e 3 , e 4 , e 5 } E:边集\{e_1,e_2,e_3,e_4,e_5\} E:{e1,e2,e3,e4,e5}

e i ϵ E ( G ) e_i \epsilon E(G) eiϵE(G),每条边 e i e_i ei V ( G ) V(G) V(G)中的一对点 ( u , v ) (u,v) (u,v)与之对应;如果任意 ( u , v ) (u,v) (u,v) ( v , u ) (v,u) (v,u)对应同一边,则称为无向网络,否则为有向网络;如果任意的 ∣ e i ∣ = 1 |e_i|=1 ei=1,则称为无权网络,否则称为加权网络

1.3 链接矩阵表达

行列代表网络中的节点,如果两个节点之间无连接,则对应位置为0;否则为对应边的权重。

上述网络结构的链接矩阵的表现形式为:

A = 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 0 A=\begin{matrix} 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0 & 1 & 1\\ 0 & 0 & 0 &1 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\end{matrix} A=001000001000110100001011000100000100

构造 L a p l a c e Laplace Laplace矩阵 L = K − A L=K-A L=KA;其中 A A A为网络的链接矩阵, K K K为一对角矩阵,对角线上的元素对应网络中各个节点的度

上述网络结构的 K K K矩阵为:

K = 1 0 0 0 0 0 0 1 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 1 0 0 0 0 0 0 1 K=\begin{matrix} 1 & 0 & 0 & 0 & 0 & 0\\0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 3 & 0 & 0 & 0\\0 & 0 &0 &3 &0 & 0\\0&0&0&0&1&0\\0&0&0&0&0&1\end{matrix} K=100000010000003000000300000010000001

则其 L a p l a c e Laplace Laplace矩阵为:

L = 1 0 − 1 0 0 0 0 1 − 1 0 0 0 − 1 − 1 3 − 1 0 0 0 0 − 1 3 − 1 − 1 0 0 0 − 1 1 0 0 0 0 − 1 0 1 L=\begin{matrix}1&0&-1&0&0&0\\0&1&-1&0&0&0\\-1&-1&3&-1&0&0\\0&0&-1&3&-1&-1\\0&0&0&-1&1&0\\0&0&0&-1&0&1 \end{matrix} L=101000011000113100001311000110000101

网络的拓扑

  • 节点之间的相互联系的模式

2.度、平均度、度分布

2.1 度:与节点之间相连的连边数

在这里插入图片描述

上述网络结构中,各个节点的度为:

  • k 1 = 1 , k 2 = 3 , k 3 = 2 , k 4 = 2 k_1=1,k_2=3,k_3=2,k_4=2 k1=1,k2=3,k3=2,k4=2

度的计算方法:

  • 链接矩阵中,节点的度为矩阵对应行的元素和

2.2 平均度

对于无向网络:

< k > = 1 N ∑ i = 1 N K i = 2 L N <k>=\frac{1}{N} \sum_{i=1}^N K_i=\frac{2L}{N} <k>=N1i=1NKi=N2L

其中N为网络节点数目,L为网络边的数目

上述网络结构中平均度 < k > = 2 <k>=2 <k>=2

2.3 度分布

Q:如果两个网络的平均度相等,那么两个网络是否具有相同的性质?

需要考虑两个网络的度分布情况

定义:

网络的度分布是指:我们将网络中节点的度值从小到大排列,统计度值为k的节点占整个网络节点数的比例 P ( k ) P(k) P(k),即 P ( k ) = N k / N P(k)=N_k/N P(k)=Nk/N

在这里插入图片描述

3.路径、距离与介数

3.1 路径

定义:

一条路径是指一个节点序列,其中每一对相邻的节点之间都有一条连边

路径的表示:

P 0 , n = i 0 , i 1 , i 2 , . . . i n P_{0,n}={i_0,i_1,i_2,...i_n} P0,n=i0,i1,i2,...in

P 0 , n = { ( i 0 , i 1 ) , ( i 1 , i 2 ) , ( i 2 , i 3 ) , . . . . ( i n − 1 , i n ) } P_{0,n}=\{(i_0,i_1),(i_1,i_2),(i_2,i_3),....(i_{n-1},i_n)\} P0,n={(i0,i1),(i1,i2),(i2,i3),....(in1,in)}

在这里插入图片描述

如上图中: P 1 , 6 = 1 , 2 , 3 , 5 , 7 , 6 P_{1,6}={1,2,3,5,7,6} P1,6=1,2,3,5,7,6

最短路径:

两个节点之间可能存在多条路径,最短路径是指连接这两个节点的边数最少的路径

两个节点之间的最短距离:

两个节点之间的最短路径上的边数目

两点间路径的条数

记 N i , j 为 节 点 i , j 之 间 路 径 的 条 数 , 记 A i , j 为 节 点 i , j 之 间 的 最 短 距 离 记N_{i,j}为节点i,j之间路径的条数,记A_{i,j}为节点i,j之间的最短距离 Ni,ji,j,Ai,ji,j

  • 如果节点i,j之间存在一条连边,那么 A i , j = 1 A_{i,j}=1 Ai,j=1,否则 A i , j = 0 A_{i,j}=0 Ai,j=0
  • 如果节点i,j之间存在一条长度为2的路径,那么一定存在节点k,使得 A i , k A k , j = 1 A_{i,k}A_{k,j}=1 Ai,kAk,j=1,反之 A i , k A k , j = 0 A_{i,k}A_{k,j}=0 Ai,kAk,j=0

节点i,j之间距离为2的路径数量的计算方法为:

N i , j 2 = ∑ k = 1 N A i , k A k , j = [ A 2 ] i , j N_{i,j}^{2}=\sum_{k=1}^N A_{i,k}A_{k,j}=[A^2]_{i,j} Ni,j2=k=1NAi,kAk,j=[A2]i,j

则节点i,j之间距离为n的路径的数量的计算方法为:

N i , j n = ∑ ∑ . . . ∑ A i , k 1 A k 1 , k 2 . . . A k n − 1 , j = [ A n ] i , j N_{i,j}^{n}=\sum\sum...\sum A_{i,k_1}A_{k_1,k_2}...A_{k_{n-1},j}=[A^n]_{i,j} Ni,jn=...Ai,k1Ak1,k2...Akn1,j=[An]i,j

3.2 距离

网络直径:

直径 d m a x d_{max} dmax:网络中任意两点间最短距离的最大值

网络平均距离:

对于一个连通图,平均最短路径长度:

< d > = 1 n ( n − 1 ) ∑ i , j ≠ i d i , j <d>=\frac{1}{n(n-1)}\sum_{i,j\neq i}d_{i,j} <d>=n(n1)1i,j=idi,j

其中 d i , j d_{i,j} di,j表示从节点i到节点j的最短距离,n表示网络中结点的数目

常见网络结构分析

在这里插入图片描述

3.3 介数

定义

任意一对节点间最短路径所经过的次数

点介数:路径经过某个节点的次数,称之为该节点的点介数

边介数:路径经过某条边的次数,称之为该条边的边介数

介数反映了相应的节点或边在整个网络中的作用和影响力,是一个全局几何量

4.集聚系数

定义1:

节点 k i 个 邻 居 节 点 之 间 实 际 存 在 的 边 数 E i 和 总 的 可 能 边 数 之 比 k_i个邻居节点之间实际存在的边数E_i和总的可能边数之比 kiEi

C i = 2 e i k i k i − 1 C_i=\frac{2e_i}{k_i k_i-1} Ci=kiki12ei

在这里插入图片描述

定义2:

C i = 包 含 节 点 i 的 三 角 形 数 目 以 节 点 i 为 中 心 的 连 通 三 元 组 数 目 = ∑ j k a i j a j k a k i ∑ j k a i j a k i C_i=\frac{包含节点i的三角形数目}{以节点i为中心的连通三元组数目}=\frac{\sum_{jk} a_{ij}a_{jk}a_{k_i}}{\sum_{jk} a_{ij}a_{ki}} Ci=ii=jkaijakijkaijajkaki

在这里插入图片描述

网络中所有节点的集聚系数的平均值

< C > = 1 N ∑ i = 1 N C i <C>=\frac{1}{N}\sum_{i=1}^N C_i <C>=N1i=1NCi

网络的传递性

T = 网 络 中 三 角 形 数 目 网 络 中 连 通 三 元 组 的 数 目 / 3 T=\frac{网络中三角形数目}{网络中连通三元组的数目/3} T=/3

在这里插入图片描述

  • 如果网络中任意两个节点有连接,则T=1
  • 如果网络中无三角形连接,则T=0

在这里插入图片描述

5.网络的稀疏性与连通性

完全连接网络:

如果一个网络中任意两个节点之间都有连边存在,则称其是一个完全连接网络,它的平均度 < k > = N − 1 <k>=N-1 <k>=N1,拥有连接边的数目 L m a x = N ( N − 1 ) / 2 L_{max}=N(N-1)/2 Lmax=N(N1)/2

网络的稀疏性
定义:

网络的稀疏度定义为网络中实际存在的边数与最大可能的边数之比

L L m a x = 2 L N ( N − 1 ) \frac{L}{L_{max}}=\frac{2L}{N(N-1)} LmaxL=N(N1)2L

其中,L:网络中实际存在的边数 N:网络中的节点数

无向网络的连通
连通图:

网络中任意两个节点之间都至少存在一条路径

最大连通集团:

含有节点数最多的连通子图

在这里插入图片描述

6. 度相关性

门当户对 or 抱大腿?

节点间度值的关系
  1. 同配
    • 度大节点倾向于连接度大节点
  2. 异配
    • 度大节点倾向于连接度小节点
  3. 中性
    • 节点间的连接与他们自身的度值无关
如何衡量网络的度度相关性
  1. 可视化描述

    e j , k e_{j,k} ej,k:网络中随机选取的一条边的两个端点的度分别为j和k的概率

    ∑ j , k e j , k = 1 \sum _{j,k}e_{j,k}=1 j,kej,k=1 ∑ j e j , k = q k \sum_j e_{j,k}=q_k jej,k=qk

    q k q_k qk:网络中随机选取的一条边的端点的度为k的概率

    q k = k p k < k > q_k=\frac{kp_k}{<k>} qk=<k>kpk

    q k = C k p k q_k=Ckp_k qk=Ckpk,C为归一化常数, C = 1 / < k > C=1/<k> C=1/<k>

    如果网络不具有度相关性: e j , k = q j q k e_{j,k}=q_jq_k ej,k=qjqk

    计算网络的 e j , k e_{j,k} ej,k,并对其进行可视化,观察 e j , k e_{j,k} ej,k的分布,从而判断网络的度相关性

    在这里插入图片描述

  2. 度相关函数

    在这里插入图片描述

    在这里插入图片描述

  3. 相关系数

    在这里插入图片描述

    在这里插入图片描述

  4. 皮尔逊相关系数

在这里插入图片描述

7. 富人俱乐部现象

现实生活中:富人的圈子问题?

在这里插入图片描述

在这里插入图片描述

8. 有向网络

在网络链接矩阵中的体现:$A_{i,j} \neq A_{j,i} $

有向网络的衡量:

在这里插入图片描述

  • 平均入度

    • 平均入度=平均出度
  • 平均出度

  • 平均度

    • < k > = L N <k>=\frac{L}{N} <k>=NL,其中L为连接边数目,N为节点总数
  • 在有向网络中,路径仅能沿着箭头的方向,因此,在有向网络中,从A到B的最短路径可能不等于从B到A的最短路径

  • 有向网络的集聚性:

    • 参考文献

在这里插入图片描述

  • 有向网路的连通性:
    • 弱连通
      • 将有向网络中所有边替换为无向边,替换后的无向网络是一个连通图,则称该网络为弱连通图
    • 强连通
      • 有向网络中任意两个节点间都存在路径

9. 加权网络

链接矩阵元素的值不一定为0或1,存在其他值

加权的不同定义:
1. 相似权

概念与距离相反,边的权重越大,顶点之间就越亲近

2.相异权

概念与距离相同,边权越大,顶点之间的距离越远

节点之间距离的计算

在这里插入图片描述

加权网络集聚系数的计算

在这里插入图片描述

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值