数据挖掘day08-线性代数的本质09~11

09、基变换

矩阵变换其实就是由基向量变换形成的,也就是之前第三、四章写的内容。

1、在一个坐标轴,向量都由基向量变换组成,向量 [ x y ] \left[ \begin{matrix}x \\ y \end{matrix} \right] [xy],中x,y只是记录变换的数值,其实就是 [ x ∗ i y ∗ j ] \left[ \begin{matrix}x*i \\ y*j \end{matrix} \right] [xiyj]

2、所以,线性变换,相当于只是基向量的变换,向量没变。例如变换为 [ a b c d ] \left[ \begin{matrix}a&b \\c&d \end{matrix} \right] [acbd],基向量变成 [ a c ] \left[ \begin{matrix}a \\ c \end{matrix} \right] [ac] [ b d ] \left[\begin{matrix}b \\ d \end{matrix} \right] [bd]那么还是一样,

这个向量就是 [ a x b y c x d y ] \left[ \begin{matrix}ax&by \\cx&dy \end{matrix} \right] [axcxbydy]

3、我们最终的目的,就是不管矩阵怎么变换,都换算成常规的坐标系表示。

下面是用其他基向量表示的矩阵变换,整个计算式,其实是用不同的坐标系描述同一件事:
在这里插入图片描述
在这里插入图片描述

10、 特征向量与特征值

特征向量就是矩阵变换后还留在同一空间的向量,如下图的两条线。其实在三维上,就是转动的
特征值就是变换后的倍数
在这里插入图片描述
但是在二维转换,不一定有特征向量。
那么特征向量就是说,对于矩阵 A A A,存在一个向量 V ⃗ \vec V V ,在进行转换后,只是进行拉伸就是 λ \lambda λ V ⃗ \vec V V ,然后:
在这里插入图片描述
其实,倒数第二步,说明 V ⃗ \vec V V 在变换之后为0,得出最后的结论是行列式是0。其实也是说矩阵 A − λ I A- \lambda I AλI的列向量是线性的
在这里插入图片描述
对角矩阵,其实就是说所有基向量都是特征向量
在这里插入图片描述
由于对角矩阵的计算比较简单,例如计算幂,所以,对转换后的矩阵计算,可以将特征向量作为基向量,计算后再变换回来。
在这里插入图片描述

11、抽象向量空间

比如,函数也是向量,某些函数也是线性的。例如求导、微分。
在这里插入图片描述
二维矩阵变换的规定,就是这两条规定在二维的体现,这样就可以用基向量表示矩阵变换。
下面准备用矩阵描述求导:
首先表示空间为全体多项式
在这里插入图片描述
然后,将未知数x的不同次幂作为基向量
在这里插入图片描述
导数就是下面的矩阵变换(无限多项):
在这里插入图片描述
线性代数和函数的不同命名:
在这里插入图片描述
所以,向量是非常多不同的东西,叫做向量空间:
在这里插入图片描述
只要符合如下公理,就可以进行向量加法和数乘:
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值