用Matlab求解绘制2D散点(x y)数据的最小外接矩形

用Matlab求解绘制2D散点(x y)数据的最小外接矩形


0 引言

  散点/多边形的外接图形是确定模型轮廓或姿态的一种可视化方法,也是有很大的用途的。前面已经介绍过两种简单的散点 ( x , y ) {(x,y)} (x,y)外接图形的原理及实现过程,本篇继续理解下散点数据最小外接矩形原理

😜 且听絮叨

  前面提到的沿轴外接矩形,实际是一种简单的外接矩形,因为沿轴,所以方向已知,在 X O Y XOY XOY面内有一个解,所以比较好求;最小外接矩形通常指面积最小周长最小,在随机点中找满足条件的矩形,就需要在 X O Y XOY XOY内旋转矩形使其可以包含所有随机点,且面积/周长最小的,即为符合要求的解。本篇基于网上资料使用凸包算法求解散点的最小外接矩形。

1 原理介绍及实现

  先介绍下凸包算法求解最小外接矩形的步骤:

(1)先找散点 ( x i , y i ) {(x_{i},y_{i})} (xi,yi)的凸包点或最小外包多边形,问题转化为了求多边形的最小外接矩形。找凸包点可以调用matlab函数convhull,返回凸包点的坐标索引,进而可以得到外接多边形的角点坐标

edges = convhull(x,y); 
plot(x(edges),y(edges),'Color','b')

(2)以 n n n边形的一条边 ( A − B ) (A-B) (AB)为例,假设矩形的某边平行于 ( A − B ) (A-B) (AB),那么通过 ( A − B ) (A-B) (AB)仅有一个矩形可以包含所有散点。所以一共可以找到 n n n个矩形,通过比较n个矩形,找到满足面积最小/周长最小的一个即为所求解。

(3)如何找到平行于 ( A − B ) (A-B) (AB)边的矩形呢? 假设 ( A − B ) (A-B) (AB)边平行于Y轴,那么问题就等价于前面介绍过的找沿轴外接矩形的过程;若 ( A − B ) (A-B) (AB)不平行于Y轴,只用将所有散点或角点坐标旋转到以 ( A − B ) (A-B) (AB)为轴的坐标系下,然后用找沿轴外接矩形的原理,就能找到一个以 ( A − B ) (A-B) (AB)为边的矩形。

  下面为示例代码,相关函数在下一部分。

%% 散点外接图形
clc;clear;
n = 100;
x = rand(n,1); % 随机数
y = rand(n,1);

figure(1)
scatter(x,y,'o')
hold on

% 凸包多边形
edges = convhull(x,y); 
plot(x(edges),y(edges),'Color','b')

% 散点x y最小外接矩形(XX最小)
[rectx,recty,area,perimeter] = minboundrect(x,y,'p');
hold on
plot(rectx,recty,Color='c',LineStyle='--',LineWidth=3.4);

2 完整代码及相关函数

💦💦💦💦💦

%% 散点求外接图形,与前面提到的两种进行对比
clc;clear;
n = 100;
x = rand(n,1); % 随机数
y = rand(n,1);

figure(1)
scatter(x,y,'o')
hold on

% 绘制外接圆(方法1)
[center_x,center_y,r] = maxBoundCycle(x,y);
para = [center_x-r, center_y-r, 2*r, 2*r];
rectangle('Position', para, 'Curvature', [1 1],'EdgeColor','g',LineStyle='-.');

% 绘制外接圆(方法2)
hold on
theta = 0:pi/50:2*pi; %角度[0,2*pi] 
xx = center_x + r*cos(theta);
yy = center_y + r*sin(theta);
plot(xx,yy,'o')

% 散点x y外接矩形[沿轴]
hold on
[boundary] = maxBoundRect(x,y);
plot(boundary(:,1),boundary(:,2),Color='b',LineStyle='-',LineWidth=1.2);

% 散点x y最小外接矩形[]
[rectx,recty,area,perimeter] = minboundrect(x,y,'a');
hold on
plot(rectx,recty,Color='m',LineStyle=":",LineWidth=3.4);
% 最小外接矩形(求解函数)
function [rectx,recty,area,perimeter] = minboundrect(x,y,metric)
% minboundrect: Compute the minimal bounding rectangle of points in the plane
% usage: [rectx,recty,area,perimeter] = minboundrect(x,y,metric)
%
% arguments: (input)
%  x,y - vectors of points, describing points in the plane as
%        (x,y) pairs. x and y must be the same lengths.
%
%  metric - (OPTIONAL) - single letter character flag which
%        denotes the use of minimal area or perimeter as the
%        metric to be minimized. metric may be either 'a' or 'p',
%        capitalization is ignored. Any other contraction of 'area'
%        or 'perimeter' is also accepted.
%
%        DEFAULT: 'a'    ('area')
%
% arguments: (output)
%  rectx,recty - 5x1 vectors of points that define the minimal
%        bounding rectangle.
%
%  area - (scalar) area of the minimal rect itself.
%
%  perimeter - (scalar) perimeter of the minimal rect as found
%
%
% Note: For those individuals who would prefer the rect with minimum
% perimeter or area, careful testing convinces me that the minimum area
% rect was generally also the minimum perimeter rect on most problems
% (with one class of exceptions). This same testing appeared to verify my
% assumption that the minimum area rect must always contain at least
% one edge of the convex hull. The exception I refer to above is for
% problems when the convex hull is composed of only a few points,
% most likely exactly 3. Here one may see differences between the
% two metrics. My thanks to Roger Stafford for pointing out this
% class of counter-examples.
%
% Thanks are also due to Roger for pointing out a proof that the
% bounding rect must always contain an edge of the convex hull, in
% both the minimal perimeter and area cases.
%
%
% See also: minboundcircle, minboundtri, minboundsphere
%
%
% default for metric
if (nargin<3) || isempty(metric)
  metric = 'a';
elseif ~ischar(metric)
  error 'metric must be a character flag if it is supplied.'
else
  % check for 'a' or 'p'
  metric = lower(metric(:)');                    
  ind = strmatch(metric,{'area','perimeter'});             
  if isempty(ind)                
    error 'metric does not match either ''area'' or ''perimeter'''
  end
  % just keep the first letter.
  metric = metric(1);
end
 
 
% preprocess data
x=x(:);
y=y(:);
 
 
% not many error checks to worry about
n = length(x);                                    
if n~=length(y)                               
  error 'x and y must be the same sizes'
end
 
 
% start out with the convex hull of the points to
% reduce the problem dramatically. Note that any
% points in the interior of the convex hull are
% never needed, so we drop them.
if n>3
  edges = convhull(x,y);  % 'Pp' will silence the warnings
 
 
  % exclude those points inside the hull as not relevant
  % also sorts the points into their convex hull as a
  % closed polygon
 
  x = x(edges);
  y = y(edges);
 
  % probably fewer points now, unless the points are fully convex
  nedges = length(x) - 1;                       
elseif n>1
  % n must be 2 or 3
  nedges = n;
  x(end+1) = x(1);
  y(end+1) = y(1);
else
  % n must be 0 or 1
  nedges = n;
end
 
 
% now we must find the bounding rectangle of those
% that remain.
 
 
% special case small numbers of points. If we trip any
% of these cases, then we are done, so return.
switch nedges
  case 0
    % empty begets empty
    rectx = [];
    recty = [];
    area = [];
    perimeter = [];
    return
  case 1
    % with one point, the rect is simple.
    rectx = repmat(x,1,5);
    recty = repmat(y,1,5);
    area = 0;
    perimeter = 0;
    return
  case 2
    % only two points. also simple.
    rectx = x([1 2 2 1 1]);
    recty = y([1 2 2 1 1]);
    area = 0;
    perimeter = 2*sqrt(diff(x).^2 + diff(y).^2);
    return
end
% 3 or more points.
 
 
% will need a 2x2 rotation matrix through an angle theta
Rmat = @(theta) [cos(theta) sin(theta);-sin(theta) cos(theta)];
 
 
% get the angle of each edge of the hull polygon.
ind = 1:(length(x)-1);
edgeangles = atan2(y(ind+1) - y(ind),x(ind+1) - x(ind));
% move the angle into the first quadrant.
edgeangles = unique(mod(edgeangles,pi/2));
 
 
% now just check each edge of the hull
nang = length(edgeangles);              
area = inf;                           
perimeter = inf;
met = inf;
xy = [x,y];
for i = 1:nang                         
  % rotate the data through -theta 
  rot = Rmat(-edgeangles(i));
  xyr = xy*rot;
  xymin = min(xyr,[],1);
  xymax = max(xyr,[],1);
 
  % The area is simple, as is the perimeter
  A_i = prod(xymax - xymin);
  P_i = 2*sum(xymax-xymin);
 
  if metric=='a'
    M_i = A_i;
  else
    M_i = P_i;
  end
 
  % new metric value for the current interval. Is it better?
  if M_i<met
    % keep this one
    met = M_i;
    area = A_i;
    perimeter = P_i;
 
    rect = [xymin;[xymax(1),xymin(2)];xymax;[xymin(1),xymax(2)];xymin];
    rect = rect*rot';
    rectx = rect(:,1);
    recty = rect(:,2);
  end
end

3 结语

💦💦💦💦💦
  本篇介绍了求解2维散点最小外接矩形原理,并提供了示例代码对相关过程进行了实现。希望对你有所帮助😜。






😜
😜😜
😜😜😜😜

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

咋(za)说

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值