线性回归

给定由d个属性描述的示例x=(x1;x2;…xd),其中x_i是x在第i个属性上的取值,线性模型试图学得一个通过属性的线性组合来进行预测的函数,即
在这里插入图片描述
一般用向量形式写成
在这里插入图片描述
线性回归试图学得:
在这里插入图片描述
如何确定w和b是的均方差最小呢?
均方差是回归任务中最常用的性能度量,它对应了常用的欧式距离:
在这里插入图片描述
更一般的,对于数据分布D和概率密度函数p(.),均方误差可描述为:
在这里插入图片描述
所以在线性回归中我们可以让均方误差最小化,具体表示为:
在这里插入图片描述
基于均方误差最小化来进行模型求解的方法称为“最小二乘法”,在线性回归中,最小二乘法就是试图找到一条直线,使所有样本到直线上的欧式距离之和最小。
在线性回归中E(w,b)是关于w和b的凸函数,怎么判断一个函数是不是凸函数呢?我们有两种方法:

  1. 对于区间[a,b]上定义函数f,若它对区间中任意两点x1,x2均有:
    在这里插入图片描述
    则称f为区间[a,b]上的凸函数。
  2. 对实数集上的函数,可通过二阶导数来判别:若二阶导数在区间上非负,则称为凸函数;若二阶导数在区间上恒大于0,则称为严格凸函数。
    我们怎么才能使均方误差最小呢?其实我们只要找到w和b最小值就可以是整个式子变得最小。那么我们怎么找到w和b的最小值呢?下面就是找w和b最小值的过程。
    我们可将E(w,b)分别对w和b求导,得到:
    在这里插入图片描述
    在这里插入图片描述
    然后令上面两个式子等于零得到w和b最优解的闭式解:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    线性判别分析(LDA)是一种经典的线性学习方法。LDA的思想非常朴素:给定训练样例集,设法将样例投影到一条直线上,使得同样例的投影点尽可能接近,异类样例的投影点尽可能远离;在对新样本进行分类时,将其投影到同样的这条直线上,在根据投影点的位置来确定新样本的类别。
    在这里插入图片描述
    怎么样才能使同类样例的投影点尽可能接近?我们可以让同类样例投影点的协方差尽可能小,即
    尽可能的小在这里插入图片描述
    而欲使异类样例的投影点尽可能远离,可以让类中心之间的距离尽可能大,即
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值