一、安装配置Pycharm
【吃够了配环境的苦不想从头开始,等哪天换电脑了再记录(先浅浅的放个目录)】
简单说一下我的环境配置:
python
cuda、 cudnn(我好像11.1\11.7\10.2都有,看自己的驱动适合哪个吧)
torch、 torchvision
conda
1 Pycharn
2 Anaconda
3 Cuda
4 Pytorch
二、源码准备
1 源码
源码:https://github.com/WongKinYiu/yolov7
下载好后,在我们的Pycharm中打开
2 虚拟环境
选择之前创建的虚拟环境
3 安装依赖库
在目录表中可以看到,有一个requirements.txt,里面包含了yolov7所需要的所有依赖
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
如果中间出现错误,可以自己单独手动下载,这里经常会默认下载的torch和torchvision是cpu版本,想用gpu版本可以一会儿重新安装torch和torchvision:https://download.pytorch.org/whl/torch_stable.html
全部安装好以后,我们可以在detect.py测试一下【这里有个yolov7.pt,在我们之前下载的源码包里是没有的,可以自行下载一个】:
4 权重
我们使用官方权重进行训练前,一定要先重参数化
三、数据集准备
yolo的数据集需要的标签格式是txt文件