RF高频腔设计(2)

2 场和粒子的相互作用

在经典电动力学中,电磁场与运动带电粒子之间的相互作用由两组方程描述:描述场的麦克斯韦方程和描述粒子动态的运动方程。运动带电粒子将出现为麦克斯韦方程中的源项𝐽⃗ 和 𝜌,而场将出现为运动方程中的洛伦兹力。
∇ × B ⃗ − 1 c 2 ∂ ∂ t E ⃗ = μ 0 J ⃗ , ∇ ⋅ B ⃗ = 0 , ∇ × E ⃗ + ∂ ∂ t B ⃗ = 0 , ∇ ⋅ E ⃗ = μ 0 c 2 ρ , \nabla\times\vec{B}-\frac{1}{c^{2}}\frac{\partial}{\partial t}\vec{E}=\mu_{0}\vec{J},\quad\nabla\cdot\vec{B}\quad=0,\\\nabla\times\vec{E}+\frac{\partial}{\partial t}\vec{B}=0,\nabla\cdot\vec{E}=\mu_{0}c^{2}\rho, ×B c21tE =μ0J ,B =0,×E +tB =0,E =μ0c2ρ,
d r ⃗ d t = p ⃗ γ m , d p ⃗ d t = q ( E ⃗ + p ⃗ γ m × B ⃗ ) , \begin{aligned}&\frac{\mathrm{d}\vec{r}}{\mathrm{d}t}=\quad\frac{\vec{p}}{\gamma m},\\&\frac{\mathrm{d}\vec{p}}{\mathrm{d}t}=q\left(\vec{E}+\frac{\vec{p}}{\gamma m}\times\vec{B}\right),\end{aligned} dtdr =γmp ,dtdp =q(E +γmp ×B ),
这是描述带电粒子在电磁场中运动的著名的洛伦兹力公式。第一个方程表示粒子位置矢量 r ⃗ \vec{r} r 随时间的变化率,即粒子的速度矢量 d r ⃗ d t \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} dtdr 。这个方程说明了速度矢量与粒子动量 p ⃗ \vec{p} p 、质量 m m m、洛伦兹因子 γ \gamma γ 之间的关系,其中 γ \gamma γ 是相对论修正因子。第二个方程表示粒子动量矢量 p ⃗ \vec{p} p 随时间的变化率,即粒子的加速度。这个方程描述了粒子在电场 E ⃗ \vec{E} E 和磁场 B ⃗ \vec{B} B 中受到的洛伦兹力,其中 q q q 是粒子的电荷。

相对论因子 𝛾 由以下公式给出:
γ = 1 + ( p m c ) 2 \gamma = \sqrt{1 + \left(\frac{p}{mc}\right)^2} γ=1+(mcp)2

粒子的总能量为:
W = γ m c 2 = ( m c 2 ) 2 + ( p ) 2 = m c 2 + W kin W = \gamma m c^2 = \sqrt{(mc^2)^2 + (p)^2} = mc^2 + W_{\text{kin}} W=γmc2=(mc2)2+(p)2 =mc2+Wkin

能量的变化由下式导出:
d W = c 2 γ p ⃗ ⋅ d p ⃗ = q c 2 E ⃗ ⋅ d r ⃗ dW = \frac{c^2}{\gamma} \vec{p} \cdot d\vec{p} = q c^2 \vec{E} \cdot d\vec{r} dW=γc2p dp =qc2E dr
在给定公式中, W kin W_{\text{kin}} Wkin 表示粒子的动能,即其运动速度产生的能量。

注意,只有电场对粒子做功(改变其能量);由于磁场垂直于粒子轨迹,因此该项在数量积中消失。

3 波导到腔(2维-3维)

麦克斯韦方程和腔的边界条件的解即使在没有任何源的情况下也存在非零解(非零场)。
这些解被称为“特征解”,即广义特征值问题的特征向量。
这些解具有特征频率(特征值)的依赖性。

当电流和电荷为零时,麦克斯韦方程变为
∇ × B ⃗ − 1 c 2 ∂ ∂ t E ⃗ = 0 , ∇ ⋅ B ⃗ = 0 , ∇ × E ⃗ + ∂ ∂ t B ⃗ = 0 , ∇ ⋅ E ⃗ = 0. \nabla\times\vec{B}-\frac{1}{c^{2}}\frac{\partial}{\partial t}\vec{E}=0,\quad\nabla\cdot\vec{B}=0,\\\nabla\times\vec{E}+\frac{\partial}{\partial t}\vec{B}=0,\quad\nabla\cdot\vec{E}=0. ×B c21tE =0,B =0,×E +tB =0,E =0.

同时乘上旋度算子(∇ ×)得到 ∇ × ∇ × E ⃗ + ∇ × ∂ ∂ t B ⃗ = 0 \nabla\times\nabla\times\vec{E}+\nabla\times\frac\partial{\partial t}\vec{B}=0 ××E +×tB =0,代入 ∇ × ∂ ∂ t B ⃗ = 1 c 2 ∂ 2 ∂ t 2 E ⃗ \nabla\times\frac\partial{\partial t}\vec{B}=\frac1{c^2}\frac{\partial^2}{\partial t^2}\vec{E} ×tB =c21t22E ,并应用公式 ∇ × ∇ × x ⃗ ≡ ∇ ∇ ⋅ x ⃗ − Δ x ⃗ \nabla\times\nabla\times\vec x\equiv\nabla\nabla\cdot\vec{x}-\Delta\vec{x} ××x ∇∇x Δx ,可以得到
Δ E ⃗ − 1 c 2 ∂ 2 ∂ t 2 E ⃗ = 0 \Delta\vec{E}-\frac1{c^2}\frac{\partial^2}{\partial t^2}\vec{E}=0 ΔE c21t22E =0

这个公式是电磁场的波动方程,描述了电场 E ⃗ \vec{E} E 随时间和空间的变化。其中:

  • Δ \Delta Δ 表示拉普拉斯算子,表示对空间中的各个方向进行二阶偏导数求和;
  • ∂ 2 ∂ t 2 \frac{\partial^2}{\partial t^2} t22 表示对时间进行两次偏导数;
  • c c c 表示光速。

这个方程告诉我们电场 E ⃗ \vec{E} E 在空间中的散度的变化和时间上的二阶导数之间存在一个关系,通常用来描述电磁波在介质中传播的行为。

3.1 矩形波导

上述方程的一个可能解是一个固定频率下的均匀平面波,完全由以下解描述:
E ⃗ ∝ u ⃗ y cos ⁡ ( ω t − k ⃗ ⋅ r ⃗ ) \vec{E} \propto \vec{u}_y \cos(\omega t - \vec{k} \cdot \vec{r}) E u ycos(ωtk r )
其中,向量 k ⃗ \vec{k} k 指向波的传播方向,其长度在自由空间中为 k = ω / c k = \omega / c k=ω/c
假设电场在 y y y 方向的线性极化,并且在 x x x 平面上以一个方向 α \alpha α 的传播,其中 k ⃗ ⋅ r ⃗ = ω z cos ⁡ α + x sin ⁡ α \vec{k} \cdot \vec{r} = \omega z \cos \alpha + x \sin \alpha k r =ωzcosα+xsinα
我们选择了一个时间依赖项为 cos ⁡ ( ω t ) \cos(\omega t) cos(ωt)
图1左侧的示意图显示了电场的振幅,并且应该想象成以光速向右移动(沿着向量 k ⃗ \vec{k} k 的方向),垂直于相位前沿(黑色线)。在图1右侧的图中,我们说明了向量 k ⃗ \vec{k} k 沿着 z z z ( k z ) ( k_z) (kz) x x x k ⊥ k_\perp k的分量——请注意,沿着 ( z ) 轴的传播由 k ⃗ \vec{k} k z z z 分量描述。
Electronic wave
沿着 𝑧 轴的波长是 𝜆⁄cos𝛼,大于自由空间的波长 𝜆。
在给定方向上相位前沿传播的速度称为相位速度,由于波在方向 k ⃗ \vec{k} k 上以速度 𝑐传播,因此从上述示例中,沿着 𝑧 方向的相位速度为
v φ , z = ω k z = c cos ⁡ α = c 1 − ( ω c ω ) 2 > c v_{\varphi,z}=\frac\omega{k_z}=\frac c{\cos\alpha}=\frac c{\sqrt{1-\left(\frac{\omega_c}\omega\right)^2}}>c vφ,z=kzω=cosαc=1(ωωc)2 c>c
参数 𝑘 表示电磁波的波矢量,它指示了电磁波传播方向和波长。

由于所考虑的示例中电场是极化的在 𝑦 方向上,因此在任何位置 𝑦 = const. 的位置插入理想导电平面,即与该极化垂直的平面,并不会影响电磁场方程的解。

接下来考虑两个均匀平面波的叠加,具有相同的振幅,并且相对于 z 方向以 𝛼 和 -𝛼 的角度传播。现在总场变为:
E y ∝ ( cos ⁡ ( ω t − ω c ( z cos ⁡ α + x sin ⁡ α ) ) + cos ⁡ ( ω t − ω c ( z cos ⁡ α − x sin ⁡ α ) ) ) = 2 cos ⁡ ( ω c sin ⁡ α x ) cos ⁡ ( ω t − ω c cos ⁡ α z ) = 2 cos ⁡ ( k ⊥ x ) cos ⁡ ( ω t − k z z ) , E_{y}\propto\left(\cos\left(\omega t-\frac\omega c(z\cos\alpha+x\sin\alpha)\right)+\cos\left(\omega t-\frac\omega c(z\cos\alpha-x\sin\alpha)\right)\right)\\=2\cos\left(\frac\omega c\sin\alpha x\right)\cos\left(\omega t-\frac\omega c\cos\alpha z\right)=2\cos(k_\perp x)\cos(\omega t-k_zz), Ey(cos(ωtcω(zcosα+xsinα))+cos(ωtcω(zcosαxsinα)))=2cos(cωsinαx)cos(ωtcωcosαz)=2cos(kx)cos(ωtkzz),
从中可以看出,在某些平面上 𝑥 = const.;例如,在 ω c sin ⁡ α x = k ⊥ x = ± π 2 \frac\omega c\sin\alpha x=k_\perp x=\pm\frac\pi2 cωsinαx=kx=±2π,电场在任何时间都为0。
因此我们还可以在这些位置添加理想导电的墙壁,而不会干扰它们之间的场分布,从而创建宽度为 a = π c ω c = π k ⊥ a=\frac{\pi c}{\omega_{\mathrm{c}}}=\frac\pi{k_{\perp}} a=ωcπc=kπ 和任意高度的矩形波导。
图2说明了这种叠加效应

superposition
如图,所呈现的模式是一种特殊情况,选择作为示例的TE10模式,其中TE代表“横向电场”(电场没有z分量),索引“10”(读作“一零”)表示模式在x和y方向的阶数(x方向的半波长,y方向上无场的依赖性)。

3.2 波导色散相速度

给定宽度a,
对于 T E m 0 \mathrm{TE}_{m0} TEm0模式, k ⊥ k_\perp k必须满足
k ⊥ a = m π k_\perp a=m\pi ka=
此时在z方向的传播常数为:
k z = k 2 − k ⊥ 2 = ω c 1 − ( ω c ω ) 2 k_z=\sqrt{k^2-k_\perp^2}=\frac\omega c\sqrt{1-\left(\frac{\omega_\mathrm{c}}\omega\right)^2} kz=k2k2 =cω1(ωωc)2

这是在图3中绘制的特征波导色散。

请注意,沿着z轴的相速度由如下公式给出。
v φ , z = ω k z = c cos ⁡ α = c 1 − ( ω c ω ) 2 > c v_{\varphi,z}=\frac\omega{k_z}=\frac c{\cos\alpha}=\frac c{\sqrt{1-\left(\frac{\omega_c}\omega\right)^2}}>c vφ,z=kzω=cosαc=1(ωωc)2 c>c
在频率𝜔c处,即所谓的截止频率,此时𝑘𝑧 = 0且𝑘⊥ = 𝑘,这意味着电磁波在波导的侧壁上以纯粹横向的方向反射,在所有位置𝑧处于同相,即相速度 v φ , z v_{\varphi,z} vφ,z为无穷大。
在截止频率处,描述场能量传输的群速度为零。

对于𝜔 < 𝜔c,𝑘𝑧是虚数—没有波的传播,但在轴向上存在指数衰减的场。

对于阶数为 𝑚, 𝑛 的 TE 或 TM 模式, ω c \omega_c ωc 的更一般表达式是
ω c c = ( m π a ) 2 + ( n π b ) 2 \frac{\omega_\mathrm{c}}{c}=\sqrt{\left(\frac{m\pi}{a}\right)^2+\left(\frac{n\pi}{b}\right)^2} cωc=(a)2+(b)2
Waveguide dispersion
图3显示了波导的色散和自由空间的色散的区别。红色表示在波导中的色散。
其中相速度是 k z ω \frac{k_z}{\omega} ωkz的倒数。
可以看到在截止频率处相速度为无穷大,频率越大越趋近光速。

为了说明矩形波导中任意阶数模式的场分布。
可以看到,指标𝑚和𝑛分别表示横向宽度𝑎和高度𝑏中的半波数量。

矩形波导的模式

  • 23
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_43354598

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值