【Python】Yahoo股票时间序列预测

使用Python抓取并分析2014-2018年的股票数据,通过时间序列建模预测2018年12月到2019年11月的交易量,结果显示该期间交易量呈现波动上涨趋势,特别是在1月、4月、10月和11月变化显著,据此给出了买卖建议。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

流程:(1)抓取数据; (2)建模; (3)分析。

1.抓取数据:

环境:IPython3;

import pandas_datareader as data
df={'谷歌':'GOOG'}
start_data='2014-12-01'
end_data='2018-12-01'
GOOGDf=data.get_data_yahoo(df['谷歌'],start_data,end_data)
# GOOGDf.head() #查看头部数据
# GOOGDf.tail() #查看尾部数据
# GOOGDf.shape #查看数据规模
# GOOGDf.describe() #查看整体数据状况
GOOGDf.to_csv("GOOG.csv",sep=' ')

2.时间序列建模:
根据2014-2018年数据,预测股票未来一年的交易量:

import pandas as pd
from pandas import datetime
from sklearn.metrics import mean_squared_error
from math import sqrt
from matplotlib import pyplot
def parser(x):
	return datetime.strptime('201'+x, '%Y-%m')
series =pd.read_csv('GOOG'.csv', header=0, parse_dates=[0], index_col=0, squeeze=T
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值