流程:(1)抓取数据; (2)建模; (3)分析。
1.抓取数据:
环境:IPython3;
import pandas_datareader as data
df={'谷歌':'GOOG'}
start_data='2014-12-01'
end_data='2018-12-01'
GOOGDf=data.get_data_yahoo(df['谷歌'],start_data,end_data)
# GOOGDf.head() #查看头部数据
# GOOGDf.tail() #查看尾部数据
# GOOGDf.shape #查看数据规模
# GOOGDf.describe() #查看整体数据状况
GOOGDf.to_csv("GOOG.csv",sep=' ')
2.时间序列建模:
根据2014-2018年数据,预测股票未来一年的交易量:
import pandas as pd
from pandas import datetime
from sklearn.metrics import mean_squared_error
from math import sqrt
from matplotlib import pyplot
def parser(x):
return datetime.strptime('201'+x, '%Y-%m')
series =pd.read_csv('GOOG'.csv', header=0, parse_dates=[0], index_col=0, squeeze=T