【深度学习】关于Permutation Invariant的解释

本文探讨了在神经网络中,尤其是图像识别任务中,多层感知机和卷积网络对特征排列的不同敏感性。多层感知机是排列不变的,即特征的顺序变化不会影响结果,而卷积网络则依赖于特征的空间位置。这种差异揭示了两种网络结构在处理信息时的基本原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Permutation Invariant指的是特征之间没有空间位置关系.
如多层感知机,改变像素的位置对最后的结果没有影响.

f ( ( x 1 , x 2 , x 3 ) ) = f ( ( x 2 , x 1 , x 3 ) ) = f ( ( x 3 , x 1 , x 2 ) ) f((x_1,x_2,x_3))=f((x_2,x_1,x_3))=f((x_3,x_1,x_2)) f((x1,x2,x3))=f((x2,x1,x3))=f((x3,x1,x2))

但对卷积网络而言,特征之间则有空间位置关系.

以上解释参考以下问题的回答.
What does “permutation invariant” mean in the context of neural networks doing image recognition?

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值