【点云处理之论文狂读经典版5】—— Deep Sets

摘要

  • 我们研究了定义在sets上的机器学习任务模型设计问题
  • 考虑了定义在sets上的目标函数,该函数是permutation-invariant的
  • 主要理论定义了invariant function的特征,并且提供了任意permutation invariant目标函数应当属于的函数族
  • 推导了permutation-invariant在深度模型中的充要条件

1.引言

  • 提出了一个基础框架DeepSets,解决了输入为sets的情况。
  • 将这种结构进行扩展以适应任何目标的情况
  • 开发了一种deep network,该网络可以对具有任意尺寸的sets进行操作
  • 在有监督和半监督设置中,简单的parameter-sharing scheme能够对sets进行一般的处理
  • 通过实验证明,在不同的任务中,我们网络的泛化性很好

2.Permutation Invariance and Equivariance

2.1 Problem Definition

Permutation Invariance

给定一个函数 f f f,能够将一个向量空间中的 X ∈ R d \mathcal{X} \in \mathbb{R}^d XRd 转换为另一个向量空间中的 Y ∈ R c \mathcal{Y} \in \mathbb{R}^c YRc。在 s e t s sets sets上进行操作时,必须保证该函数对于sets中的元素permutation invariant,即对于任意的permutation, π : f ( { x 1 , … , x M } ) = f ( { x π ( 1 ) , … , x π ( M ) } ) \pi: f\left(\left\{x_{1}, \ldots, x_{M}\right\}\right)=f\left(\left\{x_{\pi(1)}, \ldots, x_{\pi(M)}\right\}\right) π:f({x1,,xM})=f({xπ(1),,xπ(M)})

Permutation Equivariance

给定permutation equivariant函数 f \mathbf{f} f,输入和输出都应当是Permutation Invariance的:
f ( [ x π ( 1 ) , … , x π ( M ) ] ) = [ f π ( 1 ) ( x ) , … , f π ( M ) ( x ) ] \mathbf{f}\left(\left[x_{\pi(1)}, \ldots, x_{\pi(M)}\right]\right)=\left[f_{\pi(1)}(\mathbf{x}), \ldots, f_{\pi(M)}(\mathbf{x})\right] f([xπ(1),,xπ(M)])=[fπ(1)(x),,fπ(M)(x)]

2.2 Structure

Permutation Invariance

  1. 在set X X X上操作的函数 f ( X ) f(X) f(X)是一个valid set function,其中set X X X是从可数空间 X \mathfrak{X} X选取出来的。当且仅当该函数可以分解为 ρ ( ∑ x ∈ X ϕ ( x ) ) \rho\left(\sum_{x \in X} \phi(x)\right) ρ(xXϕ(x))的形式,其中 ϕ \phi ϕ ρ \rho ρ是合适的transformations, 那么这个函数对于 X X X中的元素permutation而言是invariant的。
  2. X \mathfrak{X} X不可数的情况下,仅能证明 f ( X ) = f(X)= f(X)= ρ ( ∑ x ∈ X ϕ ( x ) ) \rho\left(\sum_{x \in X} \phi(x)\right) ρ(xXϕ(x))在固定的元素数量下成立。——定理2

Permutation Equivariance

标准的神经网络层可以表示为 f Θ ( x ) = σ ( Θ x ) \mathbf{f}_{\Theta}(\mathbf{x})=\boldsymbol{\sigma}(\Theta \mathbf{x}) fΘ(x)=σ(Θx),其中 Θ ∈ R M × M \Theta \in \mathbb{R}^{M \times M} ΘRM×M是权值矩阵, σ : R → R \sigma: \mathbb{R} \rightarrow \mathbb{R} σ:RR是激活函数,那么permutation-equivariance的充要条件为:

Lemma 3
当且仅当 Θ \Theta Θ中的非对角元素是tied together, 对角线元素都是相同的,即:
Θ = λ I + γ ( 11 ⊤ ) λ , γ ∈ R 1 = [ 1 , … , 1 ] ⊤ ∈ R M I ∈ R M × M is the identity matrix \Theta=\lambda \mathbf{I}+\gamma\left(\mathbf{1 1}^{\top}\right) \quad \lambda, \gamma \in \mathbb{R} \quad \mathbf{1}=[1, \ldots, 1]^{\top} \in \mathbb{R}^{M} \quad \mathbf{I} \in \mathbb{R}^{M \times M} \text{is the identity matrix} Θ=λI+γ(11)λ,γR1=[1,,1]RMIRM×Mis the identity matrix
那么上述定义的函数 f Θ : R M → R M \mathbf{f}_{\Theta}: \mathbb{R}^{M} \rightarrow \mathbb{R}^{M} fΘ:RMRM 是permutation equivariant的。

2.3 Related Results

de Finetti theorem

Bayesian statistics中的exchangeable model:
p ( X ∣ α , M 0 ) = ∫ d θ [ ∏ m = 1 M p ( x m ∣ θ ) ] p ( θ ∣ α , M 0 ) p\left(X \mid \alpha, M_{0}\right)=\int \mathrm{d} \theta\left[\prod_{m=1}^{M} p\left(x_{m} \mid \theta\right)\right] p\left(\theta \mid \alpha, M_{0}\right) p(Xα,M0)=dθ[m=1Mp(xmθ)]p(θα,M0)
其中 θ \theta θ是隐藏特征, α , M 0 \alpha, M_{0} α,M0是先验的超参数。

考虑共轭先验的exponential families。在特殊情况下, p ( x ∣ θ ) = exp ⁡ ( ⟨ ϕ ( x ) , θ ⟩ − g ( θ ) ) p(x \mid \theta)=\exp (\langle\phi(x), \theta\rangle-g(\theta)) p(xθ)=exp(ϕ(x),θg(θ)) p ( θ ∣ α , M 0 ) = exp ⁡ ( ⟨ θ , α ⟩ − M 0 g ( θ ) − h ( α , M 0 ) ) p\left(\theta \mid \alpha, M_{0}\right)=\exp \left(\langle\theta, \alpha\rangle-M_{0} g(\theta)-h\left(\alpha, M_{0}\right)\right) p(θα,M0)=exp(θ,αM0g(θ)h(α,M0)),如果边缘掉 θ \theta θ,,可以得到:
p ( X ∣ α , M 0 ) = exp ⁡ ( h ( α + ∑ m ϕ ( x m ) , M 0 + M ) − h ( α , M 0 ) ) p\left(X \mid \alpha, M_{0}\right)=\exp \left(h\left(\alpha+\sum_{m} \phi\left(x_{m}\right), M_{0}+M\right)-h\left(\alpha, M_{0}\right)\right) p(Xα,M0)=exp(h(α+mϕ(xm),M0+M)h(α,M0))

Representer theorem and kernel machines

Spectral methods

3. Deep Sets

3.1 Architecture

Invariant model

  • 定理2中permutation invariant functions的结构暗示了一种对目标set进行推理的一般策略,我们称之为DeepSet。
  • 用其他通用的approximators代替 ϕ \phi ϕ ρ \rho ρ并不会改变事情的本质,因此会得到下述模型:
  • 实例 x m x_m xm通过变换得到表示 ϕ ( x m ) \phi(x_m) ϕ(xm)
  • 将表示 ϕ ( x m ) \phi(x_m) ϕ(xm)相加,并使用 ρ \rho ρ网络以与任何深度网络(例如全连接的层、非线性等)相同的方式处理输出。
  • 可选项:如果有额外的元信息 z z z,那么上述网络就会有条件映射 ϕ ( x m ∣ z ) \phi(x_m|z) ϕ(xmz)
    总之,就是将所有表示相加,然后再应用非线性变换。

Equivariant model

基于Lemma 3的公式,当式子中的权重和输入 x \mathbf{x} x相乘时,会得到两个部分:

  1. I x \mathbf{Ix} Ix
  2. ( 11 ⊤ ) x \left(\mathbf{1 1}^{\top}\right)\mathbf{x} (11)x

由于加法并不依赖permutation,因此这样的层是permutation-equivariant。

进一步地,我们可以使用其他的方法:
f ( x ) = σ ( λ I x + γ maxpool ( x ) 1 ) \mathbf{f(x)}=\boldsymbol{\sigma}(\lambda \mathbf{Ix}+\gamma\text{maxpool}(\mathbf{x})\mathbf{1 }) f(x)=σ(λIx+γmaxpool(x)1)
其中maxpool操作使得set中的元素是permutation-equivariant的。在实际应用中效果更好,这可能是因为,当 λ = γ \lambda=\gamma λ=γ时,非线性的输入是最大归一化。

4.实验

4.1.3Point Cloud Classification

生词

  • anomaly n. 异常,反常
  • piezometer n. 压力计
  • embankment dams 土石坝
  • cosmology n. 宇宙学
  • If and only if ——> iff 当且仅当
  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值