影响消费者购买意愿的因素分析报告

一、引言

在现代消费市场中,消费者的购买意愿受到多种因素的影响。本研究旨在探讨个性化产品推荐采纳度、客户评论重视度、是否评论和购物体验对消费者购买某类商品(以亚马逊平台商品为例)意愿的影响。研究假设如下:

  1. Customer_Reviews_Importance客户评论重视度越高,消费者的购买意愿越强。
  2. Personalized_Recommendation_Frequency个性化推荐准确度越高,消费者的购买意愿越强。
  3. Rating_Accuracy建议准确性越高,消费者的购买意愿越强。
  4. Shopping_Satisfaction购物体验越好,消费者的购买意愿越强。

二、数据收集与准备

数据来源:本研究数据来源于一份大型数据分析网站kaggle的公开数据集,是一份包含了23个变量的问卷,分析了亚马逊购物平台的用户的购买行为和习惯,来来洞察和分析买家的购买心理。数据为csv文件,并通过导入SPSS软件进行分析。(数据链接https://www.kaggle.com/datasets/swathiunnikrishnan/amazon-consumer-behaviour-dataset)
变量定义:
• age(连续变量):消费者的年龄,为连续变量。
• gender(分类变量):消费者的性别,分为female、male、Prefer not to say 三类。
• Purchase_Frequency(分类变量):消费者的购买频率,分为 Few times a month、Once a month、Less than once a month、Multiple times a week、Once a week5类。
• Purchase_Categories(分类变量):消费者通常在亚马逊上购买哪些商品分类,分为Beauty and Personal Care、Clothing and Fashion、Groceries and Gourmet等29类。
• Personalized_Recommendation_Frequency(分类变量):消费者根据亚马逊的个性化产品推荐进行购买的意愿,分为yes、no和sometimes。
• Browsing_Frequency(分类变量):消费者浏览一次亚马逊的网站或应用程序的频率,分为Few times a week、Few times a month、Rarely、Multiple times a day
• Product_Search_Method(分类变量):消费者如何在亚马逊上搜索产品,分为Keyword、Filter、categories、others。
• Search_Result_Exploration(分类变量):消费者倾向于浏览多页搜索结果还是专注于第一页,分为Multiple pages和First page。
• Customer_Reviews_Importance(连续变量):客户评论在消费者的决策过程中有多重要,1到5分。
• Add_to_Cart_Browsing(分类变量):消费者在亚马逊上浏览时是否将产品添加到购物车。分为Yes、Maybe和No。
• Cart_Completion_Frequency(分类变量):消费者在将产品添加到购物车后,您完成一次购买的频率。分为Sometimes、Often、Rarely、Never、Always。
• Cart_Abandonment_Factors(分类变量):哪些因素会影响消费者放弃购物车购买的决定。分为Found a better price elsewhere、High shipping costs、Changed my mind or no longer need the item、others。
• Saveforlater_Frequency(分类变量):消费者是否使用亚马逊的“保存以备后用”功能,如果是,多久使用一次?分为Sometimes、Rarely、Never、Often、Always。
• Review_Left(分类变量):消费者有没有在亚马逊上留下过产品评论?分为yes和no。
• Review_Reliability(分类变量):消费者在购买时对产品评论的依赖程度是多少?分为Occasionally、Heavily、Moderately、Never、Rarely。
• Review_Helpfulness(分类变量):消费者是否从其他客户的评论中找到有用的信息?分为Yes、No、Sometimes。
• Personalized_Recommendation_Frequency(连续变量):消费者多久收到一次亚马逊的个性化产品推荐?1-5分。
• Recommendation_Helpfulness(分类变量):消费者觉得这些建议有帮助吗?分为Yes、Sometimes、No。
• Rating_Accuracy(连续变量):消费者如何评价收到的建议的相关性和准确性?1-5分。
• Shopping_Satisfaction(连续变量):消费者对亚马逊上的整体购物体验有多满意?1-5分。
• Service_Appreciation(分类变量):消费者最欣赏亚马逊服务的哪些方面?分为Competitive prices、Wide product selection、User-friendly website/app interface、Customer service 、Product recommendations、Customer service、Quick delivery和All the above。
• Improvement_Areas(分类变量):消费者认为亚马逊可以在哪些方面进行改进?分为Reducing packaging waste、Product quality and accuracy、Shipping speed and reliability、Customer service responsiveness、Nothing、better app interface and lower shipping charges、Nil、Add more familiar brands to the list、UI、Scrolling option would be much better than going to next page、Quality of product is very poor according to the big offers、I have no problem with Amazon yet. But others tell me about the refund issues 、User interface 、Irrelevant product suggestions、User interface of app
、I don’t have any problem with Amazon和No problems with Amazon

数据导入:将CSV数据集导入SPSS软件,完成数据准备。

三、描述性分析

通过SPSS的描述性统计功能,得到以下结果:
在这里插入图片描述

• Customer_Reviews_Importance:均值=2.21,标准差=1.209,最小值=1,最大值=5。
• Personalized_Recommendation_Frequency:均值=2.68,标准差=1.217,最小值=1,最大值=5
• Rating_Accuracy:均值=2.71,标准差=1.092,最小值=1,最大值=5
• Shopping_Satisfaction:均值=2.58,标准差=1.096,最小值=1,最大值=5
• age:均值=27.3,标准差=8.393,最小值=16,最大值=50。
• purchase_number:均值=62.5379,标准差=2.39119,最小值=0.5,最大值=8。
品牌忠诚度和产品质量整体较高,而价格敏感度和广告宣传的感知存在差异。购买意愿的均值表明,大多数消费者对购买智能手机持积极态度。
在这里插入图片描述

在购买频率方面,我们调查了66个有效观察值,并将其分为五个类别。以下是每个类别的频率和百分比描述:
 每月几次(Few times a month):
频率:20次
百分比:30.3%
这是所有受访者中比例最高的类别,表明有三分之一左右的受访者每月会进行几次购买。
 每月少于一次(Less than once a month):
频率:16次
百分比:24.2%
紧随其后的是每月少于一次的购买频率,约占受访者的四分之一。
每周多次(Multiple times a week):
频率:8次
百分比:12.1%
有约12%的受访者表示他们每周会进行多次购买。
 每月一次(Once a month):
频率:15次
百分比:22.7%
约五分之一的受访者表示他们每月会进行一次购买。
 每周一次(Once a week):
频率:7次
百分比:10.6%
最后,有约10%的受访者表示他们每周会进行一次购买。
在这里插入图片描述

这个表格展示了一个关于个性化推荐频率的调查结果。下面是对表格内容的详细解读:在接受调查的66人中,有47.0%的人不接受个性化推荐,33.3%的人有时会接受,而只有19.7%的人经常接受个性化推荐。这些结果可以帮助了解用户对于个性化推荐的接受程度,并可能对未来的推荐策略产生影响。
在这里插入图片描述

这个表格是关于浏览频率的调查结果。在接受调查的66人中,有33.3%的人每周会浏览几次,27.3%的人每月会浏览几次,21.2%的人每天会浏览多次,而18.2%的人很少浏览。这些结果可以帮助了解用户的浏览习惯,并可能对网站的内容更新、推荐算法等产生影响。
在这里插入图片描述

这个表格是关于产品搜索方法的调查结果。在接受调查的66人中,有37.9%的人使用关键词进行产品搜索,34.8%的人通过分类进行搜索,18.2%的人使用筛选功能进行搜索,而9.1%的人使用了其他搜索方法。这些结果可以帮助了解用户在进行产品搜索时的偏好,并可能对电商网站的搜索功能优化、产品分类调整等产生影响。
在这里插入图片描述

这个表格是关于搜索结果探索行为的调查结果。在接受调查的66人中,有72.7%的人在搜索结果中会探索多页以寻找所需信息或产品,而只有27.3%的人会在第一页就停止探索。这些结果可以帮助了解用户在搜索结果页面上的行为模式,并可能对搜索引擎的页面设计、结果排序算法等产生影响,以更好地满足用户的需求。
在这里插入图片描述

这个表格表明,在接受调查的66人中,有42.4%的人在浏览商品时会将其添加到购物车,34.8%的人可能会添加,而22.7%的人则不会添加。这些结果可以帮助了解用户在浏览商品时的购买意愿和行为模式,对于电商网站的购物车功能设计、商品推荐策略等具有一定的参考价值。
在这里插入图片描述

这个表格表明,在接受调查的66人中,有42.4%的人有时会完成购物车结算,31.8%的人经常完成,10.6%的人总是完成,而12.1%的人很少完成,仅有3.0%的人从不完成。这些结果可以帮助电商网站了解用户在购物车结算过程中的行为模式,进而优化结算流程、提高转化率。例如,对于经常或总是完成结算的用户,可以提供更便捷的支付方式或优惠活动;对于很少或从不完成结算的用户,可以分析其原因并采取相应的改进措施。
在这里插入图片描述

这个表格表明,在接受调查的66人中,有45.5%的人因为改变主意或不再需要该商品而弃置购物车,33.3%的人因为找到了更优惠的价格而弃置,16.7%的人因为高昂的运费而弃置,而仅有4.5%的人选择了其他原因。
在这里插入图片描述

这个表格表明,在接受调查的66人中,有36.4%的人有时会使用“稍后再买”功能,30.3%的人经常使用,19.7%的人很少使用,7.6%的人总是使用,而仅有6.1%的人从不使用。
在这里插入图片描述

从这些数据可以看出,在参与统计的人群中,认为或判定为无效的人数稍多于认为或判定为有效的人数。
在这里插入图片描述

超过六成八(68.2%)的受访者被评估为高度或中等可靠,这表明大多数受访者在可靠性方面表现良好。而超过九成五(95.5%)的受访者至少被认为是偶尔可靠或更高程度的可靠。
在这里插入图片描述

有15人认为某项内容或服务没有提供帮助,占总人数的22.7%。
21人认为某项内容或服务在某些情况下或某种程度上提供了帮助,占总人数的31.8%。这个比例说明,超过三分之一的受访者觉得所评估的对象在某些时候是有用的,但可能不是始终如一或完全满足他们的期望。
30人认为某项内容或服务对他们的需求或问题提供了实质性的帮助,占总人数的45.5%。这是三个选项中比例最高的,表明超过四成的受访者对所评估的对象持积极评价。
在这里插入图片描述

有16人认为某项推荐没有提供帮助,占总人数的24.2%。
31人认为某项推荐在某些情况下或某种程度上提供了帮助,占总人数的47.0%。
19人认为某项推荐对他们的决策或需求提供了实质性的帮助,占总人数的28.8%。虽然这个比例低于“有时有帮助”的选项,但仍然表明有一定数量的受访者对所接收到的推荐持积极评价。
在这里插入图片描述

从结果来看,受访者最满意的是产品选择的多样性(33.3%)和有竞争力的价格(31.8%),而对快速配送的满意度最低(1.5%)。这表明服务提供者可能需要在配送服务方面进行改进,以提升整体的服务满意度。
在这里插入图片描述

从结果来看,受访者最关注的是产品质量和准确性(33.3%),其次是减少包装浪费(25.8%)和客户服务响应速度(22.7%)。这表明服务或产品提供者需要重点关注这些方面,以提升客户满意度和整体竞争力。

四、可视化分析

1、样本中的女性样本约占总样本的三分之二,男性样本约占三分之一。
在这里插入图片描述

2、消费者购买次数主要分布于一个月一次、一个月少于一次。
在这里插入图片描述

3、不同性别组的购物体验满意度有较为明显的差异,女性的购物体验满意度优于男性。
在这里插入图片描述

4、年龄和是否会收到准确的商品推荐信息之间并无明显关系。
在这里插入图片描述

五、独立样本t检验

通过独立样本t检验,比较不同性别在购买频次上的差异:
• 分组变量:性别(男、女)
• 检验变量:购买频次
在这里插入图片描述

检验结果显示,t=2.145,自由度=50,p=0.035(<0.05),表明男女在购买意愿上存在显著差异,女性消费者的购买频次高于男性。

六、因子分析

通过因子分析,探索品牌忠诚度、价格敏感度、产品质量和广告宣传之间的潜在结构:
在这里插入图片描述
在这里插入图片描述

• 提取因子:使用主成分分析法,提取特征根大于1的因子。
• 因子个数:提取到1个因子。
• 因子载荷矩阵:因子1主要由Personalized_Recommendation_Frequency、Shopping_Satisfaction和Rating_Accuracy构成,命名为“购物体验”。
• 因子得分:计算每个样本在这个因子上的得分,并进行排序。
因子分析结果表明,Personalized_Recommendation_Frequency、Shopping_Satisfaction和Rating_Accuracy是影响消费者购买意愿的三个主要方面。

七、回归分析

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

通过线性回归分析,分析自变量对因变量的影响程度:
• 因变量:购买频率
• 自变量:Personalized_Recommendation_Frequency、Shopping_Satisfaction和Rating_Accuracy、Customer_Reviews_Importance
回归结果显示:
• Customer_Reviews_Importance:β=-0.12,t=-0.83,p=0.934,对购买意愿的负向影响不显著。
• Personalized_Recommendation_Frequency:β=0.136,t=0.757,p=0.452,对购买意愿的正向影响不显著。
• Rating_Accuracy:β=-0.121,t=-0.651,p=0.518,对购买意愿的负向影响不显著。
• Shopping_Satisfaction:β=0.008,t=0.043,p=0.966,对购买意愿的正向影响不显著
• R方=-0.052,F统计量=0.193,p=0.941,模型拟合优度不好。
回归分析结果表明,Customer_Reviews_Importance和Rating_Accuracy对购买意愿有负向影响,Personalized_Recommendation_Frequency和Shopping_Satisfaction有正向影响。

八、结论与建议

研究发现:

  1. 由性别产生的购买频次的差异较为明显,其余Customer_Reviews_Importance和Rating_Accuracy,Personalized_Recommendation_Frequency和Shopping_Satisfaction对于购买频次的差异不够明显。
    建议:
  2. 企业可以加大对于女性消费者的已有服务体验的巩固和提升
  3. 挖掘男性消费者的消费潜力,从个性化推送到优化购物体验等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值