stable diffusion实践操作-VAE

系列文章总目录

stable diffusion实践操作



一、 前言

1 定义功能全局介绍

VAE,全名Variational autoenconder,中文叫变分自编码器。作用是:滤镜+微调 ,名字中带有vae,后缀ckpt,pt
有的大模型是会自带VAE的,比如我们常用的Chilloutmix。如果再加VAE则可能画面效果会适得其反 。

大部分底模有VAE,但是部分底模没有VAE,需要专门下载VAE才能使用。
最常用的VAE:vae-ft-mse-840000-ema-pruned
功能:用来饱和度和细节提升

色彩饱和度提高

图片细节增强

SD webUI位置

2 模型全局介绍

2.1 后缀以及存放位置

下载后存放地址:sd-webui-aki-v4.2\models\VAE

2.2 查看大模型是否有VAE

具体加不加VAE,需要详细看大模型说明,如果没有说明,那么就先不要加看看结果,如果结果比较灰蒙蒙的,那么就需要加。


二、正文

1 原理

首先贴出知乎文档,后期慢慢研究

1.1 基础原理

VAE其中包括了编码器和解码器,

在VAE的训练过程中,利用VAE的编码器对图片进行压缩,提取图片的潜在表征使得训练加速。

还原过程,将图片解压使其还原成一个清晰的图片:

SD将我们的文字集以及大模型的图像集,通过编码器(CLIP),转化成机器可以识别的代码,然后将这些代码迭代到符合我们描述的图像代码中,这些代码发送给了VAE进行解码,输出为图像。就这样SD通过我们的文字提示词,生成了基于大量图片训练的大模型的风格。

下面是一张比较严谨的流程

2 使用

2.1 增加饱和度

2.2 增加细节

3 下载

3.1 自动下载

3.2 手动下载

下载地址:(后期补充)
下载后存放地址:sd-webui-aki-v4.2\models\VAE


三 、总结

例如:以上就是今天要讲的内容,本文仅仅简单介绍了VAE的原理和使用。

### Stable Diffusion V1.5 版本特性 Stable Diffusion 的官方模型V1.5相较于之前的版本,在整体画面上保持了一致性,但在细节处理上有显著改进。具体来说,色阶对比度得到了增强,光源渲染也有所提升,使得图像中的光线效果更为自然和平滑[^1]。 ### 模型架构概述 对于技术实现方面,Stable Diffusion 1.5主要由三个核心部分组成:`text_encoder`, `unet`, 和 `vae`。这些组件共同作用于文本到图像的生成过程中,其中`unet`负责解码器的工作,而`vae`则用于编码和重建输入数据;至于`text_encoder`则是用来理解并转换用户的文字描述为机器可读的形式[^2]。 ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler model_id = "runwayml/stable-diffusion-v1-5" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.float16).to("cuda") prompt = "A fantasy landscape with a castle on top of a mountain." image = pipe(prompt).images[0] image.save("fantasy_landscape.png") ``` 这段Python代码展示了如何加载预训练好的Stable Diffusion v1.5模型,并通过给定提示词来生成一张图片。需要注意的是,此操作依赖于CUDA环境支持GPU加速以提高效率[^3]。 ### 获取与安装指导 尽管最初可以在Hugging Face平台上找到Stable Diffusion 1.5的相关资源,但由于版权纠纷的影响,目前该版本已被移除。不过用户仍然可以通过其他合法渠道获取这一版本的权重文件进行本地部署测试[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值