📘 VAE 模型使用说明卡
名称:vae-ft-mse-840000-ema-pruned.safetensors
模型类型:改进型 SD 自动编码器(VAE)
作者:StabilityAI
发布时间:官方版本,持续维护中
推荐存放路径:
/ComfyUI/models/vae/vae-ft-mse-840000-ema-pruned.safetensors
🎯 模型用途
该模型是原始 Stable Diffusion 所用 VAE 的升级版本,旨在增强图像重建质量,特别是人脸区域的还原度和平滑性。
适用于:
-
Stable Diffusion 1.5 及其衍生模型(如 CyberRealistic、AbyssOrangeMix 等)
-
ComfyUI / Automatic1111 / SD.Next 等支持外部 VAE 加载的界面
🔧 模型下载命令(使用 HuggingFace 镜像)
wget -O vae-ft-mse-840000-ema-pruned.safetensors "https://hf-mirror.com/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true"
🧠 模型背景与训练策略
名称 | 训练步数 | 损失函数 | 特点 |
---|---|---|---|
ft-MSE | 840,001 | MSE + 0.1 * LPIPS | 训练重点放在结构还原,输出图像更平滑 |
来源数据 | LAION-Aesthetics + LAION-Humans(SFW) |
技术说明:
-
从
ft-EMA
模型继续训练,使用 EMA(Exponential Moving Average)权重,更加稳定。 -
仅Decoder部分进行了微调,与原模型完全兼容。
-
更适合人像与细节还原(比原始VAE在 PSNR / SSIM / PSIM 上表现更佳)。
🧪 评估数据(参考)
📊 在 COCO2017(256x256)测试集表现:
模型 | rFID | PSNR↑ | SSIM↑ | PSIM↓ |
---|---|---|---|---|
原始 VAE | 4.99 | 23.4 | 0.69 | 1.01 |
ft-MSE | 4.70 | 24.5 | 0.71 | 0.92 |
📊 在 LAION-Aesthetics(256x256)子集表现:
模型 | rFID | PSNR↑ | SSIM↑ | PSIM↓ |
---|---|---|---|---|
原始 VAE | 2.61 | 26.0 | 0.81 | 0.75 |
ft-MSE | 1.88 | 27.3 | 0.83 | 0.65 |
✅ 推荐使用场景
-
使用 CyberRealistic、Anything、ChilloutMix、Realistic Vision 等注重真实感的模型时,提高细节还原度
-
脸部图像不糊、细节不失真的追求者
-
图生图、控制图流程中对 精度与还原 要求较高时
📝 使用方法(以 ComfyUI 为例)
-
下载并放入目录:
/ComfyUI/models/vae/vae-ft-mse-840000-ema-pruned.safetensors
-
在加载 SD 模型后,使用
VAE Loader
节点加载该 VAE。 -
可配合提示词、LoRA 调优,观察对图像细节、色彩、面部还原的影响。
🚫 注意事项
-
此模型不会生成图像,只作用于潜空间 ↔ 图像空间的编码/解码(影响画面质量、色彩、细节还原)。
-
若图像颜色异常或有过度平滑感,可尝试切换为
vae-ft-ema
或默认 VAE。