stable diffusion实践操作-LyCORIS

系列文章目录

stable diffusion实践操作



前言

LyCORIS,可以理解为lora的加强版本。
LyCORIS - Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
超越传统Lora的方法,应用在SD上
github最新地址:https://github.com/KohakuBlueleaf/LyCORIS

本章根据B站A_Eye视频整理而来,再次感谢,如果想要看原视频的童鞋,可以:
连接入口:Stable diffusion喂饭级基础教程 第十三期 什么是LyCORIS模型
另外这里有一篇模型文章:
https://www.bilibili.com/read/cv23098823/


一、LyCORIS是什么?

常见的有两种

二、使用步骤

1.下载

在网站https://www.liblibai.com/上筛选,然后就可以出来很多。

2.安装

首先,安装a1111-sd-webui-lycoris插件
如果有不会安装的童鞋,可以参考:
链接入口:插件安装教程

3 使用

安装好插件后,可以在webUI上看到如下界面:

使用的时候和lora一样,不过还有一种升级用法:

作者给了几种不同的书写方式:

依次是

那么热这几个参数是什么意思

那么什么是dylora呢?下面是论文描述

我们可以理解为dylora是lora的一种新型训练技巧,它将训练lora时的dim值由固定变为了动态可调整的参数

那么什么是dim参数?在训练lora的时候,dim参数是特征的数量,也就是输入数据的维度。

二、整理模型

1.LoHa-v1.0-pynoise

基础模型:SD1.5
触发器:Ambilight
采样器:Euler a
步数:30
CFG:7
seed:1841641950

正向提示词:

Ambilight, masterpiece, ultra-high quality,( ultra detailed original illustration),
( 1girl, upper body),(( harajuku fashion)),(( flowers with human eyes, flower eyes)), 
double exposure, fussion of fluid abstract art, glitch,( 2d),( original illustration composition),
( fusion of limited color, maximalism artstyle, geometric artstyle, butterflies, junk art) <lora:Ambilight-pynoiseloha-000003:0.6>

反向提示词

easyNegative,(realistic),(3d face),(worst quality:1.2), (low quality:1.2), (lowres:1.1), 
(monochrome:1.1), (greyscale),(multiple legs:1.5),(extra legs:1.5),(wrong legs),
(multiple hands),(missing limb),(multiple girls:1.5),garter straps,
multiple heels,legwear,thghhighs,stockings,golden shoes,railing,glass

作者介绍:
his is a LoHa model that trained by 40+ img ,and it’s the multires noise version.

I use multires noise to generate a powerful painting stroke. The scenery appear very colorful brush,and that’s where the name ambilight comes from.

You can use the LoHa to design scenes in portrait.

Trigger is ambilight,and weight 0.5-0.6 will perform better on figures, higher weight will more realistic

照片对比,背景不一样其余差距还是蛮大。

图1 官方
图2 个人

感觉应该是权重的问题,重新调整:
(后续慢慢追加)




总结

提示:这里对文章进行总结:

例如:以上就是今天要讲的内容。

### Stable Diffusion 2.1 安装指南与使用教程 对于希望部署和利用 Stable Diffusion 2.1 版本的用户而言,了解其安装流程以及基本操作至关重要。此版本提供了改进后的图像生成能力和其他功能增强。 #### 安装环境准备 为了顺利安装 Stable Diffusion 2.1,建议先设置好 Python 虚拟环境并确保已安装必要的依赖库[^1]。通常情况下,官方文档会提供详细的命令来帮助完成这些准备工作。例如: ```bash conda create --name sd python=3.8 conda activate sd pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 上述代码片段展示了如何创建一个新的 Conda 环境,并安装 PyTorch 及其他必需组件以支持 GPU 加速。 #### 获取模型文件 接着需要下载特定于 Stable Diffusion 2.1 的权重文件。这一步骤可能涉及访问 Hugging Face 或者其他托管平台上的预训练模型资源链接。注意遵循版权协议,在合法范围内获取所需数据集或模型参数。 #### 配置运行脚本 成功获得模型之后,则要配置启动脚本来加载指定版本的检查点(checkpoint),从而实现对不同风格图片的有效渲染。这部分工作往往通过修改 `config.yaml` 文件中的路径指向本地保存好的 checkpoint 来达成目的。 ```yaml model: base_learning_rate: 0.0002 params_ckpt: "./models/stable-diffusion-v2-1/model.ckpt" ``` 以上 YAML 格式的配置项指定了学习率及所使用的具体模型位置。 #### 使用提示词(Prompts) 当一切就绪后,便可以尝试输入不同的 prompt 文本来指导 AI 创造独一无二的艺术作品了。值得注意的是,合理运用 LoRA、LyCORIS 和 embeddings 这些高级特性能够显著提升最终产出的质量和多样性。 #### 探索更多可能性 除了掌握基础的操作之外,深入研究社区分享的各种技巧同样重要。比如调整采样方法(sampling method)或者探索 HyperNetworks 带来的独特效果等都能让使用者更好地驾驭这一强大的工具。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值