文章目录
函数及其性质
单调性
奇偶性
奇函数连续函数的积分一定是偶函数
有界性
对于D:
f(x)在0到无穷上面的平均值等于他在一个周期上的平均值
周期性
两个重要结论
未写的题目
5
第六题
极限的概念、性质、存在准则与计算
题目1
题目二
题目三(单调有界举例 arctanx)
题目四(几何体)
题目5
题目7
题目8
由题目知,an是单调递增的,如果bn收敛,an<b,an单调增上有界,所以一定是收敛的
题目9
函数收敛,则任意项都收敛
题目11
题目12(一般函数用具体函数排除法)
题目13
题目 14
题目16
题目17
题目 18
题目20
题目21(夹逼+定积分同时使用,先看分母,用夹逼)
题目 22(带n的极限)
题目23
也可以用积分中值定理(被积函数不变号)
题目 24
总结(做定积分有关的极限:通常用:夹逼、积中、分部)
无穷小比较
题目2
题目3
题目4(常用结论)
被积函数是m阶,上限时n阶,那么整体就是n(m+1)阶
题目5
题目6
题目7
题目8
题目9
题目10
题目12
奇函数展开式只有奇次项
函数的连续性及间断点
题目1
题目2
题目3
题目4(含有参数的极限)
对于原式,上下除以n
x趋向于负1,由于是偶函数…