线性代数学习笔记(二十五)——向量组的秩(二)

本篇笔记首介绍了矩阵的行秩和列秩,即矩阵的行秩等于矩阵的列秩等于矩阵的秩,而且矩阵乘积的秩不大于每个因子的秩;还介绍了求矩阵行秩和列秩的方法,即化为阶梯形矩阵;最后重点介绍了极大线性无关组的求法,根据矩阵的初等行(列)变换不改变其列(行)向量间的线性关系,将矩阵化为行简化阶梯形,然后直接写出极大线性无关组和其向量的线性表示。

1 矩阵的行秩和列秩

举例:矩阵 A = [ 1 1 1 1 1 3 0 2 1 1 5 6 9 1 0 0 1 1 ] A=\begin{bmatrix}1&1&1&1&1&3\\0&2&1&1&5&6\\9&1&0&0&1&1\end{bmatrix} A= 109121110110151361

取出所有的行形成行向量
α 1 = ( 1 1 1 1 1 3 ) \alpha_1=\begin{pmatrix}1&1&1&1&1&3\end{pmatrix} α1=(111113)
α 2 = ( 0 2 1 1 5 6 ) \alpha_2=\begin{pmatrix}0&2&1&1&5&6\end{pmatrix} α2=(021156)
α 3 = ( 9 1 0 0 1 1 ) \alpha_3=\begin{pmatrix}9&1&0&0&1&1\end{pmatrix} α3=(910011)

全体 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3称为矩阵 A A A行向量组

取出所有的列形成列向量
β 1 = ( 1 0 9 ) , β 2 = ( 1 2 1 ) , β 3 = ( 1 1 0 ) \beta_1=\begin{pmatrix}1\\0\\9\end{pmatrix},\beta_2=\begin{pmatrix}1\\2\\1\end{pmatrix},\beta_3=\begin{pmatrix}1\\1\\0\end{pmatrix} β1= 109 ,β2= 121 ,β3= 110

β 4 = ( 1 1 0 ) , β 5 = ( 1 5 1 ) , β 6 = ( 3 6 1 ) \beta_4=\begin{pmatrix}1\\1\\0\end{pmatrix},\beta_5=\begin{pmatrix}1\\5\\1\end{pmatrix},\beta_6=\begin{pmatrix}3\\6\\1\end{pmatrix} β4= 110 ,β5= 151 ,β6= 361

全体 β 1 , β 2 , β 3 , β 4 , β 5 , β 6 \beta_1,\beta_2,\beta_3,\beta_4,\beta_5,\beta_6 β1,β2,β3,β4,β5,β6称为矩阵 A A A列向量组

定义:矩阵 行向量组的秩 ‾ \underline{行向量组的秩} 行向量组的秩称为矩阵的行秩,矩阵 列向量组的秩 ‾ \underline{列向量组的秩} 列向量组的秩称为矩阵的列秩

上述例子中,行向量有 3 3 3个,行向量组的秩最大为 3 3 3;而列向量有 6 6 6个,列向量组的秩最大为 6 6 6。那么矩阵的行秩和列秩会不会不一样呢?
答案是否定的。
因为列向量虽然有 6 6 6个,但它是 3 3 3维的,所以秩最大也是 3 3 3
那么矩阵的行秩和列秩是否相等呢?

定理3.3.4:对任何矩阵 A A A,均有: A 的行秩 = A 的列秩 = r ( A ) \color{red}{A的行秩=A的列秩=r(A)} A的行秩=A的列秩=r(A)

矩阵的秩是用非零子式定义的,而向量组的秩是用极大无关组定义的,定义方式完全不同,但最终竟然相等!

举例:矩阵 A = [ 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 ] A=\begin{bmatrix}\color{red}{1}&\color{red}{0}&0&0\\\color{red}{0}&\color{red}{1}&0&0\\0&0&0&0\\0&0&0&0\end{bmatrix} A= 1000010000000000
其最高阶数的非0子式为 [

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值