线性代数之方程组解的结构(6)

齐次线性方程组解的结构:

将A化成简化阶梯型

\begin{pmatrix} 1 &0 &-9/4 &-3/4 & 1/4\\ 0& 1 & 3/4 &-7/4 &5/4 \\ 0& 0 & 0 & 0& 0 \end{pmatrix}

x1=9/4X_{3}+3/4X_{4}-1/4X_{5}

X2=-3/4X_{3}+7/4X_{4}-5/4X_{5}

X3,X4,X5自由未知量

\begin{pmatrix} x3\\ x4\\ x5 \end{pmatrix}\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix},\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix},\begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}

\eta 1=\begin{pmatrix} 9/4\\ -3/4\\ 1\\ 0\\ 0 \end{pmatrix}

\eta 2=\begin{pmatrix} 3/4\\ 7/4\\ 0\\ 1\\ 0 \end{pmatrix}

\eta 3=\begin{pmatrix} -1/4\\ -5/4\\ 0\\ 0\\ 1 \end{pmatrix}

\eta 1,\eta 2,\eta 3是基础解析。

线性无关的向量组,接长向量组也线性无关

所以  \eta 1,\eta 2,\eta 3 线性无关。

任意的解可由\eta 1,\eta 2,\eta 3 来线性表示 。

\begin{pmatrix} x1\\ x2\\ x3\\ x4\\ x5 \end{pmatrix}=\begin{pmatrix} 9/4X_{3}\\ -3/4X_{3}\\ X_{3}\\ 0X_{3}\\ 0X_{3} \end{pmatrix}+\begin{pmatrix} 3/4x_{4}\\ 7/4x_{4}\\ 0x_{4}\\ x_{4}\\ 0x_{4} \end{pmatrix}+\begin{pmatrix} -1/4X_{5}\\ -5/4X_{5}\\ 0X_{5}\\ 0X_{5}\\ X_{5} \end{pmatrix}=X_{3}\eta 1+X_{4}\eta 2+X_{5}\eta 3

自由未知量=总未知量-r(A)=5-2

例 :

\begin{pmatrix} 1 &0 &0 &0 &0 &1 \\ 0& 0 &1 &0 &0 &0 \\ 0& 0 & 0 & 0 & 0 & 0 \end{pmatrix}

X1=-X6

X3=0.

不在左边的都是自由未知量。

X2,X4,X5,X6都是自由未知量

\begin{pmatrix} x2\\ x4\\ x5\\ x6 \end{pmatrix}\begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix},\begin{pmatrix} 0\\ 1\\ 0\\ 0 \end{pmatrix},\begin{pmatrix} 0\\ 0\\ 1\\ 0 \end{pmatrix},\begin{pmatrix} 0\\ 0\\ 0\\ 1 \end{pmatrix}得到

\eta 1=\begin{pmatrix} 0\\ 1\\ 0\\ 0\\ 0\\ 0 \end{pmatrix}    \eta 2=\begin{pmatrix} 0\\ 0\\ 0\\ 1\\ 0\\ 0 \end{pmatrix},\eta 3=\begin{pmatrix} 0\\ 0\\ 0\\ 0\\ 1\\ 0 \end{pmatrix},\eta 4=\begin{pmatrix} -1\\ 0\\ 0\\ 0\\ 0\\ 1 \end{pmatrix}

矩阵AB,如果他们的乘积是0,则他们相加的秩<n

A_{m*n}, B_{n*s}   AB=0 则r(A)+r(B)<n


AX=b \RightarrowAX=0 导出组

1)\alpha 1, \alpha 2是AX= b 的解,则\alpha 1-\alpha 2是AX=0的解

证:A(\alpha 1 -\alpha 2 )=A\alpha 1-A\alpha 2=b-b=0

2)\alpha 1是AX=b的解,\eta是AX=0的解,\alpha 1+\eta是AX=b的解。

证:A(\alpha 1+\eta)=A\alpha 1+A\eta=b+0=b


\alpha 0是AX=b的一个解(叫它特解)

\eta是AX=0的通解(通解是指能用基础解析表示的解)

\eta=C1\eta 1+C2\eta 2+\cdotsC_{n-r}\eta _{n-r}是AX=0的基础解析。

\alpha 0+\eta是AX=b的全解

例:

\bar{A}=\begin{pmatrix} 1 & 5& -1 & -1 &-1 \\ 1 &-2 &1 &3 &3 \\ 3 &8 &-1 &1 &1 \\ 1 &-9 &3 &7 &7 \end{pmatrix}做初等行变换得

\begin{pmatrix} 1 &0 &3/7 &13/7 &13/7 \\ 0 &1 &-2/7 & -4/7 &-4/7 \\ 0& 0 & 0 & 0 &0 \\ 0& 0 & 0 & 0 & 0 \end{pmatrix}

x1=13/7-3/7x3+13/7x4

x2=-4/7+2/7x3+4/7x4

\binom{x3}{x4}\binom{0}{0}\alpha 0=\begin{pmatrix} x1\\ x2\\ x3\\ x4 \end{pmatrix}=\begin{pmatrix} 13/7\\ -4/7\\ 0\\ 0 \end{pmatrix}是AX=b的特解

A=\begin{pmatrix} 1 & 5 &-1 &-1 \\ 1& -2 &1 &3 \\ 3& 8 & -1 &1 \\ 1& -9 &3 &7 \end{pmatrix}初等行变换\begin{pmatrix} 1 & 0 & 3/7&13/7 \\ 0 &1 &-2/7 &-4/7 \\ 0& 0 & 0 &0 \\ 0 &0 &0 & 0 \end{pmatrix}

导同组的同解方程组为:

x1=-3/7x3-13/7x4

x2=2/7x3+4/7x4

\begin{pmatrix} x3\\ x4 \end{pmatrix}\binom{1}{0}\binom{0}{1}

\eta 1=\begin{pmatrix} -3/7\\ 2/7\\ 1\\ 0 \end{pmatrix}    \eta 2=\begin{pmatrix} -13/7\\ 4/7\\ 0\\ 1 \end{pmatrix}

\eta 1,\eta 2 是基础解析

 \alpha 0+\eta =\begin{pmatrix} 13/7\\ -4/7\\ 0\\ 0 \end{pmatrix}+c1\begin{pmatrix} -3/7\\ 2/7\\ 1\\ 0 \end{pmatrix}+c2\begin{pmatrix} -13/7\\ 4/7\\ 0\\ 1 \end{pmatrix}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值